- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Topology, locality, and passivity in nonreciprocal...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Topology, locality, and passivity in nonreciprocal electromagnetic media Monticone, Francesco
Description
Strongly nonreciprocal structures and photonic topological insulators are emerging as an important class of material platforms that support the propagation of robust unidirectional surface waves. In this talk, we discuss our recent work on topological, continuous, electromagnetic media, with particular focus on complex scenarios that include dissipation, spatial dispersion (nonlocality), and nonlinearities. As a model system, we consider a magnetized plasmonic material, which exhibits a typical gyrotropic nonreciprocal response. We discuss how nonlocality and dissipation affect the unidirectional nature of the supported modes, the topological transitions that may emerge, and some apparent paradoxes. We also clarify that, while nonreciprocal topological media break temporal symmetries for wave propagation, allowing to overcome some limitations of conventional electromagnetic systems, other relevant physical bounds and limits are unaffected since they depend on causality and passivity. Our study reveals limitations and potential of unidirectional/topological material platforms, and may pave the way to novel applications of topological wave-guiding systems.
Item Metadata
Title |
Topology, locality, and passivity in nonreciprocal electromagnetic media
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-10-07T16:25
|
Description |
Strongly nonreciprocal structures and photonic topological insulators are emerging as an important class of material platforms that support the propagation of robust unidirectional surface waves. In this talk, we discuss our recent work on topological, continuous, electromagnetic media, with particular focus on complex scenarios that include dissipation, spatial dispersion (nonlocality), and nonlinearities. As a model system, we consider a magnetized plasmonic material, which exhibits a typical gyrotropic nonreciprocal response. We discuss how nonlocality and dissipation affect the unidirectional nature of the supported modes, the topological transitions that may emerge, and some apparent paradoxes. We also clarify that, while nonreciprocal topological media break temporal symmetries for wave propagation, allowing to overcome some limitations of conventional electromagnetic systems, other relevant physical bounds and limits are unaffected since they depend on causality and passivity. Our study reveals limitations and potential of unidirectional/topological material platforms, and may pave the way to novel applications of topological wave-guiding systems.
|
Extent |
30.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Cornell University
|
Series | |
Date Available |
2020-04-05
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0389738
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International