- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- A short proof of Anderson localization for the 1-d...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
A short proof of Anderson localization for the 1-d Anderson model Zhu, Xiaowen
Description
The proof of Anderson localization for 1D Anderson model with arbitrary (e.g. Bernoulli) disorder, originally given by Carmona-Klein-Martinelli in 1987, is based on the Furstenberg theorem and multi-scale analysis. This topic has received a renewed attention lately, with two recent new proofs, exploiting the one-dimensional nature of the model. At the same time, in the 90s it was realized that for one-dimensional models with positive Lyapunov exponents some parts of multi-scale analysis can be replaced by considerations involving subharmonicity and large deviation estimates for the corresponding cocycle, leading to nonperturbative proofs for 1D quasiperiodic models. Here we present a proof along these lines, for the Anderson model. We also include a proof of dynamical localization based on the uniform version of Craig-Simon that works in high generality and may be of independent interest. It is a joint work with S. Jitomirskaya. Our entire proof of spectral localization fits in three pages and we expect to present almost complete detail during the talk.
Item Metadata
Title |
A short proof of Anderson localization for the 1-d Anderson model
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-09-16T14:17
|
Description |
The proof of Anderson localization for 1D Anderson model with arbitrary (e.g. Bernoulli) disorder, originally given by Carmona-Klein-Martinelli in 1987, is based on the Furstenberg theorem and multi-scale analysis. This topic has received a renewed attention lately, with two recent new proofs, exploiting the one-dimensional nature of the model. At the same time, in the 90s it was realized that for one-dimensional models with positive Lyapunov exponents some parts of multi-scale analysis can be replaced by considerations involving subharmonicity and large deviation estimates for the corresponding cocycle, leading to nonperturbative proofs for 1D quasiperiodic models. Here we present a proof along these lines, for the Anderson model. We also include a proof of dynamical localization based on the uniform version of Craig-Simon that works in high generality and may be of independent interest. It is a joint work with S. Jitomirskaya. Our entire proof of spectral localization fits in three pages and we expect to present almost complete detail during the talk.
|
Extent |
45.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of California Irvine
|
Series | |
Date Available |
2020-03-15
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0389566
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International