BIRS Workshop Lecture Videos

Banff International Research Station Logo

BIRS Workshop Lecture Videos

The stable uniqueness theorem for equivariant Kasparov theory Szabo, Gabor

Description

It can be argued that the Lin-Dadarlat-Eilers stable uniqueness theorem is one of the main driving forces behind several recent landmark results related to the classification program for nuclear C*-algebras. In a nutshell, the theorem strengthens the Cuntz picture of bivariant K-theory, and translates a KK-theoretic assumption into a rather strong statement involving (stable) asymptotic unitary equivalence of *-homomorphisms, which becomes immensely useful for extracting the role of K-theory in classification. In this talk I will present a generalization of the stable uniqueness theorem to the setting of C*-dynamical systems over a given locally compact group. I will also explain why this should be expected to be important in the context of classifying C*-dynamics up to cocycle conjugacy. This is joint work with James Gabe.

Item Media

Item Citations and Data

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International