BIRS Workshop Lecture Videos

Banff International Research Station Logo

BIRS Workshop Lecture Videos

Mixed quantum-classical simulations of nonequilibrium heat transport in molecular junctions Hanna, Gabriel


The study of nonequilibrium heat transport in molecular junctions (MJs) has gathered much attention in recent years due to its crucial role in the field of molecular electronics. To gain insight into the factors determining the heat currents in MJs, reduced models of MJs have been studied using both approximate and exact quantum dynamical methods. One such model, known as the nonequilibrium spin-boson (NESB) model, consists of a two-level system in contact with two harmonic oscillator baths at different temperatures. Recently, we developed a mixed quantum-classical framework for studying heat transport in MJs, which could enable the simulation of heat transport in more realistic models of MJs with many degrees of freedom [1]. In this talk, I will give an overview of this framework and discuss the ability of a novel mixed quantum-classical dynamics method, known as Deterministic Evolution of Coordinates with Initial Decoupled Equations (DECIDE) [2], for calculating the steady-state heat current in the NESB model in a variety of parameter regimes [3]. $$ $$ [1] Liu, J., Hsieh, C-Y., Segal, D., Hanna, G., J. Chem. Phys, 149, 224104 (2018). $$ $$ [2] Liu, J., Hanna, G., J. Phys. Chem. Lett., 9, 3928 (2018). $$ $$ [3] Carpio-Martinez, P., Hanna, G., J. Chem. Phys, in press.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International