- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Environmental non-additivity and strong-coupling in...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Environmental non-additivity and strong-coupling in non-equilibrium quantum systems Nazir, Ahsan
Description
We consider quantum systems coupled simultaneously to multiple environments. Examples include solid-state photon emitters, with coupling both to vibrations and the electromagnetic field, and molecular nanojunctions, with coupling both to vibrations and electronic leads. We show that enforcing additivity of such combined influences results in non-equilibrium dynamics that does not respect the Franck-Condon principle in the former case, and can lead to unphysical electronic current under equilibrium conditions in the latter. We overcome these shortcomings by employing a collective coordinate representation of the vibrational environment, which permits the derivation of a non-additive master equation. When applied to a two-level emitter our treatment predicts decreasing photon emission rates with increasing vibrational coupling, consistent with Franck-Condon physics. Applied to a molecular nanojunction we employ counting statistics techniques to track electron flow between the system and the electronic leads, revealing both strong-coupling and non-additive effects in the electron current, noise and Fano factor.
Item Metadata
Title |
Environmental non-additivity and strong-coupling in non-equilibrium quantum systems
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-08-20T16:07
|
Description |
We consider quantum systems coupled simultaneously to multiple environments. Examples include solid-state photon emitters, with coupling both to vibrations and the electromagnetic field, and molecular nanojunctions, with coupling both to vibrations and electronic leads. We show that enforcing additivity of such combined influences results in non-equilibrium dynamics that does not respect the Franck-Condon principle in the former case, and can lead to unphysical electronic current under equilibrium conditions in the latter. We overcome these shortcomings by employing a collective coordinate representation of the vibrational environment, which permits the derivation of a non-additive master equation. When applied to a two-level emitter our treatment predicts decreasing photon emission rates with increasing vibrational coupling, consistent with Franck-Condon physics. Applied to a molecular nanojunction we employ counting statistics techniques to track electron flow between the system and the electronic leads, revealing both strong-coupling and non-additive effects in the electron current, noise and Fano factor.
|
Extent |
39.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Manchester
|
Series | |
Date Available |
2020-02-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0388644
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International