- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Avoiding irreversibility: engineering resonant conversions...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Avoiding irreversibility: engineering resonant conversions of quantum resources Tomamichel, Marco
Description
We identify and explore the intriguing property of resource resonance arising within resource theories of entanglement, coherence and thermodynamics. While the theories considered are reversible asymptotically, the same is generally not true in realistic scenarios where the available resources are bounded. The finite-size effects responsible for this irreversibility could potentially prohibit small quantum information processors or thermal machines from achieving their full potential. Nevertheless, we show here that by carefully engineering the resource interconversion process any such losses can be greatly suppressed. Our results are predicted by higher order expansions of the trade-off between the rate of resource interconversion and the achieved fidelity, and are verified by exact numerical optimizations of the appropriate underlying approximate majorization conditions.
Item Metadata
Title |
Avoiding irreversibility: engineering resonant conversions of quantum resources
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-07-23T15:00
|
Description |
We identify and explore the intriguing property of resource resonance arising within resource theories of entanglement, coherence and thermodynamics. While the theories considered are reversible asymptotically, the same is generally not true in realistic scenarios where the available resources are bounded. The finite-size effects responsible for this irreversibility could potentially prohibit small quantum information processors or thermal machines from achieving their full potential. Nevertheless, we show here that by carefully engineering the resource interconversion process any such losses can be greatly suppressed. Our results are predicted by higher order expansions of the trade-off between the rate of resource interconversion and the achieved fidelity, and are verified by exact numerical optimizations of the appropriate underlying approximate majorization conditions.
|
Extent |
40.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Technology Sydney
|
Series | |
Date Available |
2020-01-20
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0388325
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International