- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Efficient Construction of Rigid Matrices Using an NP...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Efficient Construction of Rigid Matrices Using an NP Oracle Alman, Josh
Description
If H is a matrix over a field F, then the rank-r rigidity of H, denoted R_{H}(r), is the minimum Hamming distance from H to a matrix of rank at most r over F. Giving explicit constructions of rigid matrices for a variety of parameter regimes is a central open challenge in complexity theory. In this work, building on Williams' seminal connection between circuit-analysis algorithms and lower bounds [Williams, J. ACM 2014], we give a construction of rigid matrices in P^NP. Letting q = p^r be a prime power, we show: - There is an absolute constant delta>0 such that, for all constants eps>0, there is a P^NP machine M such that, for infinitely many N's, M(1^N) outputs a matrix H_N in {0,1}^{N times N} with rigidity R_{H_N}(2^{(log N)^{1/4 - eps}}) >= delta N^2 over F_q. Using known connections between matrix rigidity and a number of different areas of complexity theory, we derive several consequences of our constructions, including: - There is a function f in TIME[2^{(log n)^{omega(1)}}]^NP such that f notin PH^cc. Previously, it was even open whether E^NP subset PH^cc. - For all eps>0, there is a P^NP machine M such that, for infinitely many N's, M(1^N) outputs an N times N matrix H_N in {0,1}^{N times N} whose linear transformation requires depth-2 F_q-linear circuits of size Omega(N 2^{(log N)^{1/4 - eps}}). The previous best lower bound for an explicit family of N \times N matrices was only Omega(N log^2 N / log log N), for super-concentrator graphs. Joint work with Lijie Chen to appear in FOCS 2019.
Item Metadata
Title |
Efficient Construction of Rigid Matrices Using an NP Oracle
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-07-09T13:32
|
Description |
If H is a matrix over a field F, then the rank-r rigidity of H, denoted R_{H}(r), is the minimum Hamming distance from H to a matrix of rank at most r over F. Giving explicit constructions of rigid matrices for a variety of parameter regimes is a central open challenge in complexity theory. In this work, building on Williams' seminal connection between circuit-analysis algorithms and lower bounds [Williams, J. ACM 2014], we give a construction of rigid matrices in P^NP. Letting q = p^r be a prime power, we show:
- There is an absolute constant delta>0 such that, for all constants eps>0, there is a P^NP machine M such that, for infinitely many N's, M(1^N) outputs a matrix H_N in {0,1}^{N times N} with rigidity R_{H_N}(2^{(log N)^{1/4 - eps}}) >= delta N^2 over F_q.
Using known connections between matrix rigidity and a number of different areas of complexity theory, we derive several consequences of our constructions, including:
- There is a function f in TIME[2^{(log n)^{omega(1)}}]^NP such that f notin PH^cc. Previously, it was even open whether E^NP subset PH^cc.
- For all eps>0, there is a P^NP machine M such that, for infinitely many N's, M(1^N) outputs an N times N matrix H_N in {0,1}^{N times N} whose linear transformation requires depth-2 F_q-linear circuits of size Omega(N 2^{(log N)^{1/4 - eps}}). The previous best lower bound for an explicit family of N \times N matrices was only Omega(N log^2 N / log log N), for super-concentrator graphs.
Joint work with Lijie Chen to appear in FOCS 2019.
|
Extent |
51.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: MIT
|
Series | |
Date Available |
2020-01-06
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0387498
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International