- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Fractional Schroedinger Equations and Biological Computation
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Fractional Schroedinger Equations and Biological Computation Kirkpatrick, Kay
Description
In order to justify certain model equations proposed in the biophysics literature for charge transport on polymers like DNA and protein, we consider a general class of discrete nonlinear Schroedinger equations on lattices, and prove that in the continuum limit, the limiting dynamics are given by a nonlinear Schroedinger equation (NLS) with a fractional Laplacian. In particular, a range of fractional powers arise from long-range lattice interactions in this limit, whereas the usual NLS with the non-fractional Laplacian arises from short-range interactions. We also obtain equations of motion for the expected position and momentum, the fractional counterpart of the well-known Newtonian equations of motion for the standard Schroedinger equation, and use a numerical method to suggest that the nonlocal Laplacian introduces decoherence, but that effect can be mitigated by the nonlinearity. Joint work with Gigliola Staffilani, Enno Lenzmann, and Yanzhi Zhang. Time permitting, I will talk about recent work defining biophysical machines that out-perform Turing machines, in joint work with Onyema Osuagwu and Daniel Inafuku.
Item Metadata
Title |
Fractional Schroedinger Equations and Biological Computation
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-07-04T09:53
|
Description |
In order to justify certain model equations proposed in the biophysics literature for charge transport on polymers like DNA and protein, we consider a general class of discrete nonlinear Schroedinger equations on lattices, and prove that in the continuum limit, the limiting dynamics are given by a nonlinear Schroedinger equation (NLS) with a fractional Laplacian. In particular, a range of fractional powers arise from long-range lattice interactions in this limit, whereas the usual NLS with the non-fractional Laplacian arises from short-range interactions. We also obtain equations of motion for the expected position and momentum, the fractional counterpart of the well-known Newtonian equations of motion for the standard Schroedinger equation, and use a numerical method to suggest that the nonlocal Laplacian introduces decoherence, but that effect can be mitigated by the nonlinearity. Joint work with Gigliola Staffilani, Enno Lenzmann, and Yanzhi Zhang. Time permitting, I will talk about recent work defining biophysical machines that out-perform Turing machines, in joint work with Onyema Osuagwu and Daniel Inafuku.
|
Extent |
40.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Illinois
|
Series | |
Date Available |
2020-01-01
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0387401
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International