- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Counting the number of zeroes of polynomials in quadrature...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Counting the number of zeroes of polynomials in quadrature domains Shamovich, Eli
Description
Recall that given two complex polynomials $f$ and $g$, the Bezout matrix $B(f,g) = (b_{ij})$ of $f$ and $g$ is defined by $\frac{f(t)g(s) - f(s)g(t)}{t-s} = \sum_{i,j} b_{ij} t^i s^j$. It is a classical result of Hermite that given a polynomial $p(z)$, the Bezout matrix of $p(z)$ and $p^{\tau}(z) = \overline{p(\bar{z})}$ is skew self-adjoint. The number of common zeroes of $p$ and $p^{\tau}$ is the dimension of the kernel of $-i B(p,p^{\tau})$. Additionally, $p$ has $n_+$ roots in the upper half-plane and $n_-$ in the lower half-plane. Here $n-+$ and $n_-$ stand for the number of positive and negative eigenvalues of $-i B(p,p^{\tau})$, respectively. In this talk, I will describe how one can extend the notion of the Bezout matrix to a pair of meromorphic functions on a compact Riemann surface. If the surface is real and dividing the matrix $-i B(f,f^{\tau})$ is $J$-selfadjoint, for a certain signature matrix $J$. We the study the signature of the Bezoutian and obtain an extension of Hermiteâs theorem to quadrature domains. This talk is based on joint work with V. Vinnikov.
Item Metadata
Title |
Counting the number of zeroes of polynomials in quadrature domains
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-05-30T17:01
|
Description |
Recall that given two complex polynomials $f$ and $g$, the Bezout matrix $B(f,g) = (b_{ij})$ of $f$ and $g$ is defined by $\frac{f(t)g(s) - f(s)g(t)}{t-s} = \sum_{i,j} b_{ij} t^i s^j$. It is a classical result of Hermite that given a polynomial $p(z)$, the Bezout matrix of $p(z)$ and $p^{\tau}(z) = \overline{p(\bar{z})}$ is skew self-adjoint. The number of common zeroes of $p$ and $p^{\tau}$ is the dimension of the kernel of $-i B(p,p^{\tau})$. Additionally, $p$ has $n_+$ roots in the upper half-plane and $n_-$ in the lower half-plane. Here $n-+$ and $n_-$ stand for the number of positive and negative eigenvalues of $-i B(p,p^{\tau})$, respectively. In this talk, I will describe how one can extend the notion of the Bezout matrix to a pair of meromorphic functions on a compact Riemann surface. If the surface is real and dividing the matrix $-i B(f,f^{\tau})$ is $J$-selfadjoint, for a certain signature matrix $J$. We the study the signature of the Bezoutian and obtain an extension of Hermiteâs theorem to quadrature domains.
This talk is based on joint work with V. Vinnikov.
|
Extent |
32.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Waterloo
|
Series | |
Date Available |
2019-11-27
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0385990
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Postdoctoral
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International