- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Counting Saddle Connection on Translation surfaces.
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Counting Saddle Connection on Translation surfaces. Rühr, Rene
Description
A collection of polygons with the property that to each side one can find another side parallel to it can be endowed with a translation surface structure by glueing along those edges. This means that the closed surfaces obtained carries a flat metric outside finitely many conical singularities. Geodesics (which are straight lines) connecting such singularities are called saddle connections. While the asymptotic number of saddle connections of length less then T growth roughly like T^2 (in the sense that there are lower and upper bounds of that order), one can say more for a generic surface with respect to the moduli space of such structures thanks to the natural SL2-action it is equipped with. I shall present some results with polynomial error saving for counting saddle connections in the setting of a) general loci (j/w Nevo,Weiss) b) prescribed congruence restrictions in homology (j/w Magee, Guetierrez-Romo) c) lattice-surfaces using Eisenstein series (j/w Burrin,Nevo,Weiss)
Item Metadata
Title |
Counting Saddle Connection on Translation surfaces.
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-05-28T12:37
|
Description |
A collection of polygons with the property that to each side one can find another side parallel to it can be endowed with a translation surface structure by glueing along those edges.
This means that the closed surfaces obtained carries a flat metric outside finitely many conical singularities. Geodesics (which are straight lines) connecting such singularities are called saddle connections.
While the asymptotic number of saddle connections of length less then T growth roughly like T^2 (in the sense that there are lower and upper bounds of that order), one can say more for a generic surface with respect to the
moduli space of such structures thanks to the natural SL2-action it is equipped with. I shall present some results with polynomial error saving for counting saddle connections in the setting of
a) general loci (j/w Nevo,Weiss)
b) prescribed congruence restrictions in homology (j/w Magee, Guetierrez-Romo)
c) lattice-surfaces using Eisenstein series (j/w Burrin,Nevo,Weiss)
|
Extent |
65.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Technion
|
Series | |
Date Available |
2019-11-25
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0385854
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Postdoctoral
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International