BIRS Workshop Lecture Videos

Banff International Research Station Logo

BIRS Workshop Lecture Videos

A First step towards simulations of tracer motion in a thermally fluctuating viscoelastic fluid. Hohenegger, Christel


Many biological fluids, like mucus and cytoplasm, have prominent viscoelastic properties, which lead to the subdiffusive behavior of immersed particles. We propose a viscoelastic generalization of the Landau-Lifschitz Navier-Stokes fluid model for particles that are passively advected by such a medium and develop a simulation techniques based on the theory of stationary Gaussian processes. In contrast to the stochastic immersed boundary method for viscous fluids, which relies on step-by-step simulation techniques exploiting the Markov property, our method is based on the numerical evaluation of the covariance associated with individual fluid modes. The numerical method is spectral, meshless and uses results from the simulations of Generalized Langevin Equations.The implementation presents many practical problems, mostly stemming from the fact that the physical regime of interest corresponds to a situation where the memory kernel has a very slow (power law) decay.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International