BIRS Workshop Lecture Videos

Banff International Research Station Logo

BIRS Workshop Lecture Videos

Minimality of and Local Obstructions to Associative and Coassociative Submanifolds Madnick, Jesse


Seven-manifolds with a $G_2$-structure possess two distinguished classes of submanifolds: associative 3-folds and coassociative 4-folds. When the $G_2$-structure is torsion-free, such submanifolds are minimal (in fact, calibrated) and exist locally. We are led to ask: For which classes of $G_2$-structures is it the case that associative 3-folds (respectively, coassociative 4-folds) are always minimal submanifolds We will answer this by deriving a simple formula for the mean curvature, in the process uncovering new obstructions to the local existence of coassociatives. Time permitting, we will discuss the analogous results for special Lagrangian 3-folds (respectively Cayley 4-folds) in 6-manifolds with $\mathrm{SU}(3)$-structures (respectively 8-manifolds with $\mathrm{Spin}(7)$-structures). This is joint work with Gavin Ball.

Item Media

Item Citations and Data


Attribution-NonCommercial-NoDerivatives 4.0 International