- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Dynamics of non-conservative fluid thin films
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Dynamics of non-conservative fluid thin films Witelski, Thomas
Description
Interfacial instabilities and pattern formation can occur in films on partially wetting surfaces. Lubrication models asymptotically reduce the governing equations for the free-surface flow to a fourth-order nonlinear parabolic partial differential equation for the evolution of the film height. Extensive studies have examined dynamics over a range of time-scales including finite-time rupture singularities and long-time droplet coarsening cascades when the fluid mass is conserved. We show that for volatile fluids, where the mass changes due to evaporation or condensation, the behaviors observed and the analysis needed yield new challenges and important differences from the non-volatile case. Some discussion will be given on dynamics that can occur when the form of the evaporative flux violates an energy dissipating structure. This is joint work with Hangjie Ji (UCLA).
Item Metadata
Title |
Dynamics of non-conservative fluid thin films
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-05-02T10:45
|
Description |
Interfacial instabilities and pattern formation can occur in films on partially wetting surfaces. Lubrication models asymptotically reduce the governing equations for the free-surface flow to a fourth-order nonlinear parabolic partial differential equation for the evolution of the film height. Extensive studies have examined dynamics over a range of time-scales including finite-time rupture singularities and long-time droplet coarsening cascades when the fluid mass is conserved. We show that for volatile fluids, where the mass changes due to evaporation or condensation, the behaviors observed and the analysis needed yield new challenges and important differences from the non-volatile case. Some discussion will be given on dynamics that can occur when the form of the evaporative flux violates an energy dissipating structure. This is joint work with Hangjie Ji (UCLA).
|
Extent |
26.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Duke University
|
Series | |
Date Available |
2019-10-30
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0384641
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International