- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Control of eigenfunctions on hyperbolic surfaces
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Control of eigenfunctions on hyperbolic surfaces Dyatlov, Semyon
Description
Given an $L^2$-normalized eigenfunction with eigenvalue $\lambda^2$ on a Riemannian manifold $(M,g)$ and a nonempty open set $\Omega\subset M$, what lower bound can we prove on the $L^2$-mass of the eigenfunction on $\Omega$ The unique continuation principle gives a bound for any $\Omega$ which is exponentially small as $\lambda\to\infty$. On the other hand, microlocal analysis gives a $\lambda$-independent lower bound if $\Omega$ is large enough, i.e. it satisfies the geometric control condition. This talk presents a $\lambda$-independent lower bound for any set $\Omega$ in the case when $M$ is a hyperbolic surface. The proof uses microlocal analysis, the chaotic behavior of the geodesic flow, and a new ingredient from harmonic analysis called the Fractal Uncertainty Principle. Applications include control for Schrödinger equation and exponential decay of damped waves. Joint work with Jean Bourgain, Long Jin, and Joshua Zahl.
Item Metadata
Title |
Control of eigenfunctions on hyperbolic surfaces
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-04-16T11:19
|
Description |
Given an $L^2$-normalized eigenfunction with eigenvalue $\lambda^2$ on a Riemannian manifold $(M,g)$ and a nonempty open set $\Omega\subset M$, what lower bound can we prove on the $L^2$-mass of the eigenfunction on $\Omega$ The unique continuation principle gives a bound for any $\Omega$ which is exponentially small as $\lambda\to\infty$. On the other hand, microlocal analysis gives a $\lambda$-independent lower bound if $\Omega$ is large enough, i.e. it satisfies the geometric control condition.
This talk presents a $\lambda$-independent lower bound for any set $\Omega$ in the case when $M$ is a hyperbolic surface. The proof uses microlocal analysis, the chaotic behavior of the geodesic flow, and a new ingredient from harmonic analysis called the Fractal Uncertainty Principle. Applications include control for Schrödinger equation and exponential decay of damped waves. Joint work with Jean Bourgain, Long Jin, and Joshua Zahl.
|
Extent |
48.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: UC Berkeley
|
Series | |
Date Available |
2019-10-14
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0383385
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International