- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Data-Pooling in Stochastic Optimization
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Data-Pooling in Stochastic Optimization Gupta, Vishal
Description
Managing large-scale systems often involves simultaneously solving thousands of potentially unrelated stochastic optimization problems, each with limited data. Optimization intuition suggests decoupling these unrelated problems and solving them separately. Statistical intuition, however, suggests that combining the problems via some form of shrinkage may outperform decoupling, but does not offer a concrete non-parametric approach for doing so when solving complex, constrained optimization problems such as vehicle-routing, economic lot-sizing or facility location. We propose a novel data-pooling algorithm that combines both perspectives. Our approach does not require strong distributional assumptions and applies to constrained, possibly non-convex optimization problems. We show that, unlike the classical statistical setting, the potential benefits of data-pooling, in general, depend strongly on the problem structure, and, in some cases, data-pooling offers no benefit. We prove that as the number of problems grows large, our method learns if pooling is necessary and the optimal amount to pool, even if the expected amount of data per problem is fixed and bounded. We further show that pooling offers significant benefits over decoupling when there are many problems, each of which has a small amount of relevant data. We demonstrate the practical benefits of data-pooling using real data from a chain of retail drug stores in the context of inventory management.
Item Metadata
Title |
Data-Pooling in Stochastic Optimization
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2019-01-17T11:56
|
Description |
Managing large-scale systems often involves simultaneously solving thousands of potentially unrelated stochastic optimization problems, each with limited data. Optimization intuition suggests decoupling these unrelated problems and solving them separately. Statistical intuition, however, suggests that combining the problems via some form of shrinkage may outperform decoupling, but does not offer a concrete non-parametric approach for doing so when solving complex, constrained optimization problems such as vehicle-routing, economic lot-sizing or facility location. We propose a novel data-pooling algorithm that combines both perspectives. Our approach does not require strong distributional assumptions and applies to constrained, possibly non-convex optimization problems. We show that, unlike the classical statistical setting, the potential benefits of data-pooling, in general, depend strongly on the problem structure, and, in some cases, data-pooling offers no benefit. We prove that as the number of problems grows large, our method learns if pooling is necessary and the optimal amount to pool, even if the expected amount of data per problem is fixed and bounded. We further show that pooling offers significant benefits over decoupling when there are many problems, each of which has a small amount of relevant data. We demonstrate the practical benefits of data-pooling using real data from a chain of retail drug stores in the context of inventory management.
|
Extent |
47.0
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Southern California
|
Series | |
Date Available |
2019-07-17
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0379886
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International