- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Mathematical predictions for brain tumor response to...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Mathematical predictions for brain tumor response to novel therapies validated by in vivo and in vitro experiments Martínez González, Alicia
Description
Glioblastoma (GBM) is the most frequent and lethal malignant brain tumor in adults due to its invasive capability and resistance to conventional therapies. GBM typically shows an heterogenous microenviron- ment including necrotic and hypoxic areas, abnormal vasculature and different tumor cell phenotypes. We will focus on mathematical models based on PDE that try to reproduce this complex system in order to understand it and better predict the tumor behaviour [1, 2]. In addition, we will discuss in-silico simu- lations based on a mathematical model for brain tumor response to the combination of antithrombotic, antioxidants and radiation therapies [3]. Our mathematical results predict a synergistic decrease in tumor volume when both, cytotoxic therapies and antioxidants were applied. In vitro and in vivo results have confirmed this benefit not only in terms of tumor reduction but also in terms of toxicity reduction. Combined mathematical simulations and on-chip validation of malignant cellular structures formation in GBM have confirmed their usability to better understand the tumor behaviour [4, 5]. Considering the promising results, a clinical trial is being designed.
Item Metadata
Title |
Mathematical predictions for brain tumor response to novel therapies validated by in vivo and in vitro experiments
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-11-26T11:04
|
Description |
Glioblastoma (GBM) is the most frequent and lethal malignant brain tumor in adults due to its invasive capability and resistance to conventional therapies. GBM typically shows an heterogenous microenviron- ment including necrotic and hypoxic areas, abnormal vasculature and different tumor cell phenotypes. We will focus on mathematical models based on PDE that try to reproduce this complex system in order to understand it and better predict the tumor behaviour [1, 2]. In addition, we will discuss in-silico simu- lations based on a mathematical model for brain tumor response to the combination of antithrombotic, antioxidants and radiation therapies [3]. Our mathematical results predict a synergistic decrease in tumor volume when both, cytotoxic therapies and antioxidants were applied. In vitro and in vivo results have confirmed this benefit not only in terms of tumor reduction but also in terms of toxicity reduction. Combined mathematical simulations and on-chip validation of malignant cellular structures formation in GBM have confirmed their usability to better understand the tumor behaviour [4, 5]. Considering the promising results, a clinical trial is being designed.
|
Extent |
38.0
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Universidad de Castilla-La Mancha
|
Series | |
Date Available |
2019-05-26
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0379000
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International