- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- A Riemann-Hilbert problem from stability conditions
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
A Riemann-Hilbert problem from stability conditions Barbieri, Anna
Description
Given an algebra $A$ and a set of automorphisms, one can define a Riemann-Hilbert (RH) problem, aimed to find meromorphic connections on the $\mathrm{Aut}(A)$-principl bundle over $\bC$ with prescribed generalised monodromy. It is of particular interest considering a family of `isomonodromic' RH problems on $A$, parametrised by a complex manifold $M$, as this induces interesting geometric structures on the space of parameters $M$. In the context of stability conditions, there is a Riemann-Hilbert problem naturally attached to a CY3 category endowed with a generalised Donaldson-Thomas theory counting semistable objects. It is defined on the torus algebra of character on the free abelian group generated by classes of simple stable objects and depends on the choice of a stability condition. The wall-crossing formulae from Donaldson-Thomas theory are interpreted as isomonodromy conditions. I will introduce this topic and discuss some recent developments, focusing on an example associated with some special quivers.
Item Metadata
Title |
A Riemann-Hilbert problem from stability conditions
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-11-01T09:33
|
Description |
Given an algebra $A$ and a set of automorphisms, one can define a Riemann-Hilbert (RH) problem, aimed to find meromorphic connections on the $\mathrm{Aut}(A)$-principl bundle over $\bC$ with prescribed generalised monodromy. It is of particular interest considering a family of `isomonodromic' RH problems on $A$, parametrised by a complex manifold $M$, as this induces interesting geometric structures on the space of parameters $M$.
In the context of stability conditions, there is a Riemann-Hilbert problem naturally attached to a CY3 category endowed with a generalised Donaldson-Thomas theory counting semistable objects. It is defined on the torus algebra of character on the free abelian group generated by classes of simple stable objects and depends on the choice of a stability condition. The wall-crossing formulae from Donaldson-Thomas theory are interpreted as isomonodromy conditions.
I will introduce this topic and discuss some recent developments, focusing on an example associated with some special quivers.
|
Extent |
42.0
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Sheffield
|
Series | |
Date Available |
2019-05-01
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0378531
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Postdoctoral
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International