- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Circular (Yet Sound) Proofs
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Circular (Yet Sound) Proofs Atserias, Albert
Description
We introduce a new way of composing proofs in rule-based proof systems that generalizes tree-like and dag-like proofs. In the new definition, proofs are directed graphs of derived formulas, in which cycles are allowed as long as every formula is derived at least as many times as it is required as a premise. We call such proofs circular. We show that, for all sets of standard inference rules, circular proofs are sound. For Frege we show that circular proofs can be converted into tree-like ones with at most polynomial overhead. For Resolution the translation can no longer be a Resolution proof because, as we show, the pigeonhole principle has circular Resolution proofs of polynomial size. Surprisingly, as proof systems for deriving clauses from clauses, Circular Resolution turns out to be equivalent to Sherali-Adams, a proof system for reasoning through polynomial inequalities that has linear programming at its base. As corollaries we get: 1) polynomial-time (LP-based) algorithms that find circular Resolution proofs of constant width, 2) examples that separate circular from dag-like Resolution, such as the pigeonhole principle and its variants, and 3) exponentially hard cases for circular Resolution.
This is joint work with Massimo Lauria.
Item Metadata
| Title |
Circular (Yet Sound) Proofs
|
| Creator | |
| Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
| Date Issued |
2018-08-31T11:07
|
| Description |
We introduce a new way of composing proofs in rule-based proof systems that generalizes tree-like and dag-like proofs. In the new definition, proofs are directed graphs of derived formulas, in which cycles are allowed as long as every formula is derived at least as many times as it is required as a premise. We call such proofs circular. We show that, for all sets of standard inference rules, circular proofs are sound. For Frege we show that circular proofs can be converted into tree-like ones with at most polynomial overhead. For Resolution the translation can no longer be a Resolution proof because, as we show, the pigeonhole principle has circular Resolution proofs of polynomial size. Surprisingly, as proof systems for deriving clauses from clauses, Circular Resolution turns out to be equivalent to Sherali-Adams, a proof system for reasoning through polynomial inequalities that has linear programming at its base. As corollaries we get: 1) polynomial-time (LP-based) algorithms that find circular Resolution proofs of constant width, 2) examples that separate circular from dag-like Resolution, such as the pigeonhole principle and its variants, and 3) exponentially hard cases for circular Resolution.
This is joint work with Massimo Lauria.
|
| Extent |
32.0
|
| Subject | |
| Type | |
| File Format |
video/mp4
|
| Language |
eng
|
| Notes |
Author affiliation: Universitat Politecnica de Catalunya
|
| Series | |
| Date Available |
2019-04-05
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0377821
|
| URI | |
| Affiliation | |
| Peer Review Status |
Unreviewed
|
| Scholarly Level |
Faculty
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International