- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Using large cycle covers to find small cycle covers...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Using large cycle covers to find small cycle covers in cubic graphs Newman, Alantha
Description
A classic algorithm for the traveling salesman problem (TSP) on cubic graphs consists of finding a double spanning tree on the contracted graph of a cycle cover, where a cycle cover is defined as the set of edges in the complement of a perfect matching. If a cubic graph G on n vertices has a cycle cover containing k cycles, this results in a TSP tour of size $n+2k$. Since we are interested in short TSP tours, we would like to find cycle covers that have small size, i.e., having few connected components. Moemke and Svensson showed that a bridgeless, cubic graph contains a cycle cover consisting of at most n/6 cycles. Here we show how to use a large cycle cover to obtain a small cycle cover. In particular, if G is a bipartite, cubic graph on $n$ vertices, a cycle cover of size $(1/6+\epsilon)n$ can be used to find a cycle cover of size $(1/6 - \epsilon/2)n$. If G is a bridgeless, cubic graph on $n$ vertices, a cycle cover of size $(1/6 + \epsilon)n$ that covers all 3-edge cuts in G can be used to find a cycle cover of size $(1/6 - \epsilon/5)n$. (Joint work with Arash Haddadan.)
Item Metadata
Title |
Using large cycle covers to find small cycle covers in cubic graphs
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-09-25T16:08
|
Description |
A classic algorithm for the traveling salesman problem (TSP) on cubic graphs consists of finding a double spanning tree on the contracted graph of a cycle cover, where a cycle cover is defined as the set of edges in the complement of a perfect matching. If a cubic graph G on n vertices has a cycle cover containing k cycles, this results in a TSP tour of size $n+2k$. Since we are interested in short TSP tours, we would like to find cycle covers that have small size, i.e., having few connected components. Moemke and Svensson showed that a bridgeless, cubic graph contains a cycle cover consisting of at most n/6 cycles.
Here we show how to use a large cycle cover to obtain a small cycle cover. In particular, if G is a bipartite, cubic graph on $n$ vertices, a cycle cover of size $(1/6+\epsilon)n$ can be used to find a cycle cover of size $(1/6 - \epsilon/2)n$. If G is a bridgeless, cubic graph on $n$ vertices, a cycle cover of size $(1/6 + \epsilon)n$ that covers all 3-edge cuts in G can be used to find a cycle cover of size $(1/6 - \epsilon/5)n$.
(Joint work with Arash Haddadan.)
|
Extent |
23.0 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: CNRS and Université Grenoble-Alpes
|
Series | |
Date Available |
2019-04-03
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0377766
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International