- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Equivariant immersions of surfaces into SL(2, C) and...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Equivariant immersions of surfaces into SL(2, C) and complex metrics on surfaces Bonsante, Francesco
Description
I will talk about a work in progress in collaboration with Christian El Emam, whose final motivation is to study the geometry of surface group actions on SL(2, C) regarded as the homogeneous space SO(4,C)/SO(3, C). I will mainly focussed on some analytical issues related to equivariant immersions. We will introduce the notion of first and second fundamental forms for an immersion and prove that they are solutions of a complex version of the standard Gauss Codazzi equation in the hyperbolic setting. We will discuss how far this theory can be regarded as a complex version of the Anti de Sitter geometry . In particular we will introduce a notion of left/right Gauss maps for an immersion that extends the corresponding notions in the Anti de Sitter setting. In the final part of the talk we will introduce the notion of minimal immersion in this context and will try to give a general description of the embedding data of minimal surfaces in terms of holomorphic objects.
Item Metadata
Title |
Equivariant immersions of surfaces into SL(2, C) and complex metrics on surfaces
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-07-04T09:16
|
Description |
I will talk about a work in progress in collaboration with Christian El Emam, whose final motivation is to study the geometry of surface group actions on SL(2, C) regarded as the homogeneous space SO(4,C)/SO(3, C). I will mainly focussed on some analytical issues related to equivariant immersions. We will introduce the notion of first and second fundamental forms for an immersion and prove that they are solutions of a complex version of the standard Gauss Codazzi equation in the hyperbolic setting. We will discuss how far this theory can be regarded as a complex version of the Anti de Sitter geometry . In particular we will introduce a notion of left/right Gauss maps for an immersion that extends the corresponding notions in the Anti de Sitter setting. In the final part of the talk we will introduce the notion of minimal immersion in this context and will try to give a general description of the embedding data of minimal surfaces in terms of holomorphic objects.
|
Extent |
64.0
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Pavia
|
Series | |
Date Available |
2019-03-29
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0377650
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International