- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Variations of noncommutative Hodge structures in general...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Variations of noncommutative Hodge structures in general and in distinguished cases Hertling, Claus
Description
A variation of twistor structures in the sense of Simpson, Sabbah and Mochizuki is a 1-parameter family of flat connections on a complex vector bundle with (to be chosen) additional data and constraints. Some version on rank 2 bundles turns up in the DPW method for constructing CMC surfaces. Another version of arbitrary rank is equivalent to Simpson's harmonic bundles, which are a generalization and weakening of variation of Hodge structures. A generalization of variation of Hodge structures which is a not a weakening, can be encoded as an integrable variation of twistor structures. Closely related versions of this are tt^* geometry (Cecotti-Vafa), TERP structures (Hertling) and noncommutative Hodge structures (Katzarkov-Kontsevich-Pantev). In the talk, I will discuss these structures in general, and in distinguished cases which arise in the theory of isolated hypersurface singularities. A good way to control them is given by the theory of meromorphic connections with irregular poles and their Stokes structures. I will sketch some results and some open questions.
Item Metadata
Title |
Variations of noncommutative Hodge structures in general and in distinguished cases
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-07-03T15:02
|
Description |
A variation of twistor structures in the sense of Simpson, Sabbah and Mochizuki is a 1-parameter family of flat connections on a complex vector bundle with (to be chosen) additional data and constraints. Some version on rank 2 bundles turns up in the DPW method for constructing CMC surfaces. Another version of arbitrary rank is equivalent to Simpson's harmonic bundles, which are a generalization and weakening of variation of Hodge structures. A generalization of variation of Hodge structures which is a not a weakening, can be encoded as an integrable variation of twistor structures. Closely related versions of this are tt^* geometry (Cecotti-Vafa), TERP structures (Hertling) and noncommutative Hodge structures (Katzarkov-Kontsevich-Pantev). In the talk, I will discuss these structures in general, and in distinguished cases which arise in the theory of isolated hypersurface singularities. A good way to control them is given by the theory of meromorphic connections with irregular poles and their Stokes structures. I will sketch some results and some open questions.
|
Extent |
59.0
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Universitaet Manheim
|
Series | |
Date Available |
2019-03-29
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0377649
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International