- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Fooling polytopes
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Fooling polytopes Servedio, Rocco
Description
We give an explicit pseudorandom generator with seed length poly(log m, 1/\delta) * log n that \delta-fools the class of all m-facet polytopes over {0,1}^n. The previous best seed length had linear dependence on m. As a corollary, we obtain a deterministic quasipolynomial time algorithm for approximately counting the number of feasible solutions of general {0,1}-integer programs. Joint work with Ryan O'Donnell (CMU) and Li-Yang Tan (Stanford).
Item Metadata
Title |
Fooling polytopes
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-08-16T11:13
|
Description |
We give an explicit pseudorandom generator with seed length poly(log m, 1/\delta) * log n that \delta-fools the class of all m-facet polytopes over {0,1}^n. The previous best seed length had linear dependence on m. As a corollary, we obtain a deterministic quasipolynomial time algorithm for approximately counting the number of feasible solutions of general {0,1}-integer programs.
Joint work with Ryan O'Donnell (CMU) and Li-Yang Tan (Stanford).
|
Extent |
60.0
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Columbia University
|
Series | |
Date Available |
2019-03-28
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0377636
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International