- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Adaptive moving meshes in large eddy simulation for...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Adaptive moving meshes in large eddy simulation for turbulent flows Lang, Jens
Description
In the last years considerable progress has been made in the development of Large Eddy Simulation (LES) for turbulent flows. The characteristic length scale of the turbulent fluctuation varies substantially over the computational domain and has to be resolved by an appropriate numerical grid. We propose to adjust the grid size in an LES by adaptive moving meshes. The monitor function, which is the main ingredient of a moving mesh method, is determined with respect to a quantity of interest (QoI). These QoIs can be physically motivated, like vorticity, turbulent kinetic energy or enstrophy, as well as mathematically motivated, like solution gradient or some adjoint-based error estimator. The main advantage of mesh moving methods is that during the integration process the mesh topology is preserved and no new degrees of freedom are added and therefore the data structures are preserved as well. We will present results for real-life engineering and meteorological applications.
Item Metadata
Title |
Adaptive moving meshes in large eddy simulation for turbulent flows
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-05-31T09:00
|
Description |
In the last years considerable progress has been made in the development of Large Eddy Simulation (LES) for turbulent flows. The characteristic length scale of the turbulent fluctuation varies substantially over the computational domain and has to be resolved by an appropriate numerical grid. We propose to adjust the grid size in an LES by adaptive moving meshes. The monitor function, which is the main ingredient of a moving mesh method, is determined with respect to a quantity of interest (QoI). These QoIs can be physically motivated, like vorticity, turbulent kinetic energy or enstrophy, as well as mathematically motivated, like solution gradient or some adjoint-based error estimator. The main advantage of mesh moving methods is that during the integration process the mesh topology is preserved and no new degrees of freedom are added and therefore the data structures are preserved as well. We will present results for real-life engineering and meteorological applications.
|
Extent |
61.0
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Darmstadt University of Technology
|
Series | |
Date Available |
2019-03-25
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0377450
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International