- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Cohomological field theories, Chern characters and...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Cohomological field theories, Chern characters and matrix factorizations (introductory lecture) Vaintrob, Arkady
Description
Many properties of an algebraic variety X can be expressed in terms of the derived category of coherent sheaves on X (or its differential-graded enhancement). Kontsevich proposed to view arbitrary smooth and proper dg-categories as non-commutative analogs of smooth projective varieties. I will show how holomorphic functions with isolated singularities fit into this picture. In the first part of the lecture we will talk about Chern characters and the Hirzebruch-Riemann-Roch theorem for dg-categories and will see how classical invariants of singularities appear via dg-categories of matrix factorizations. Then we will turn to quantum invariants and cohomological field theories - an algebraic structure underpinning formal properties of the Gromov-Witten invariants. For a quasi-homogeneous singularity W and a finite group G of its symmetries we will describe a CohFT whose state space is the equivariant local algebra (Milnor ring) of W and whose correlators can be viewed as analogs of Gromov-Witten invariants for the non-commutative space associated with the pair (W,G). The role of the virtual fundamental class from the Gromov-Witten theory is played here by a "fundamental matrix factorization" over a certain moduli space.
Item Metadata
Title |
Cohomological field theories, Chern characters and matrix factorizations (introductory lecture)
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-09-25T09:02
|
Description |
Many properties of an algebraic variety X can be expressed in terms of the derived category of coherent sheaves on X (or its differential-graded enhancement). Kontsevich proposed to view arbitrary smooth and proper dg-categories as non-commutative analogs of smooth projective varieties. I will show how holomorphic functions with isolated singularities fit into this picture. In the first part of the lecture we will talk about Chern characters and the Hirzebruch-Riemann-Roch theorem for dg-categories and will see how classical invariants of singularities appear via dg-categories of matrix factorizations. Then we will turn to quantum invariants and cohomological field theories - an algebraic structure underpinning formal properties of the Gromov-Witten invariants. For a quasi-homogeneous singularity W and a finite group G of its symmetries we will describe a CohFT whose state space is the equivariant local algebra (Milnor ring) of W and whose correlators can be viewed as analogs of Gromov-Witten invariants for the non-commutative space associated with the pair (W,G). The role of the virtual fundamental class from the Gromov-Witten theory is played here by a "fundamental matrix factorization" over a certain moduli space.
|
Extent |
55.0
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Oregon
|
Series | |
Date Available |
2019-03-25
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0377414
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International