- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Regularity estimates for the Boltzmann equation
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Regularity estimates for the Boltzmann equation Silvestre, Luis
Description
The Boltzmann equation describes the evolution of particle densities, in terms of space and velocity, for gases and plasma. We will discuss the regularization effect of this equation in the in-homogeneous, non-cutoff case. We prove that the solution remains bounded and Holder continuous for as long as its associated hydrodynamic quantities are bounded and away from vacuum. Our analysis is based on techniques that originate in the study of parabolic integro-differential equations.
Item Metadata
Title |
Regularity estimates for the Boltzmann equation
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-08-29T11:49
|
Description |
The Boltzmann equation describes the evolution of particle densities, in terms of space and velocity, for gases and plasma. We will discuss the regularization effect of this equation in the in-homogeneous, non-cutoff case. We prove that the solution remains bounded and Holder continuous for as long as its associated hydrodynamic quantities are bounded and away from vacuum. Our analysis is based on techniques that originate in the study of parabolic integro-differential equations.
|
Extent |
55.0
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Chicago
|
Series | |
Date Available |
2019-03-23
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0377352
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International