- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Recovering a Riemannian metric from area data
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Recovering a Riemannian metric from area data Alexakis, Spyros
Description
We address a geometric inverse problem: Consider a simply connected Riemannian 3-manifold $(M,g)$ with boundary. Assume that given any closed loop \gamma on the boundary, one knows the area of the area-minimizer bounded by \gamma. Can one reconstruct the metric g from this information We answer this in the affirmative in a very broad open class of manifolds. We will briefly discuss the relation of this problem with the question of reconstructing a metric from lengths of geodesics, and also with the Calderon problem of reconstructing a metric from the Dirichlet-to-Neumann operator for the corresponding Laplace-Beltrami operator. We also raise the analogous question for asymptotically hyperbolic manifolds, and the significance of their question in physics. Joint with T Balehowsky and A Nachman.
Item Metadata
| Title |
Recovering a Riemannian metric from area data
|
| Creator | |
| Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
| Date Issued |
2018-05-17T11:35
|
| Description |
We address a geometric inverse problem: Consider a simply connected Riemannian 3-manifold $(M,g)$ with boundary. Assume that given any closed loop \gamma on the boundary, one knows the area of the area-minimizer bounded by \gamma. Can one reconstruct the metric g from this information We answer this in the affirmative in a very broad open class of manifolds. We will briefly discuss the relation of this problem with the question of reconstructing a metric from lengths of geodesics, and also with the Calderon problem of reconstructing a metric from the Dirichlet-to-Neumann operator for the corresponding Laplace-Beltrami operator. We also raise the analogous question for asymptotically hyperbolic manifolds, and the significance of their question in physics. Joint with T Balehowsky and A Nachman.
|
| Extent |
57.0
|
| Subject | |
| Type | |
| File Format |
video/mp4
|
| Language |
eng
|
| Notes |
Author affiliation: University of Toronto
|
| Series | |
| Date Available |
2019-03-21
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0377287
|
| URI | |
| Affiliation | |
| Peer Review Status |
Unreviewed
|
| Scholarly Level |
Faculty
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International