- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Liftings of BV-maps and lower semicontinuity
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Liftings of BV-maps and lower semicontinuity Rindler, Filip
Description
Liftings and their associated Young measures are new tools to study the asymptotic behaviour of sequences of BV-maps under weak* convergence. Their main feature is that they allow to keep track of the precise shape of the jump path and as such are natural objects whenever different ways of approaching a jump need to be distinguished. While this tool has several promising applications, in this talk I will focus on its use to prove lower semicontinuity for linear-growth functionals that depend on the value of the argument function, u(x), besides its gradient. It is well known that in this situation the particular shape of jumps cannot be neglected. Using the theory of liftings, we can prove relaxation theorems under essentially optimal assumptions, generalizing a classical theorem by Fonseca & Müller (1993). The key idea is that liftings provide the right way of localizing the functional in the x and u variables simultaneously under weak* convergence. As a consequence, we are able to implement an optimal measure-theoretic blow up procedure. This is joint work with Giles Shaw.
Item Metadata
Title |
Liftings of BV-maps and lower semicontinuity
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-05-22T11:23
|
Description |
Liftings and their associated Young measures are new tools to study the asymptotic behaviour of sequences of BV-maps under weak* convergence. Their main feature is that they allow to keep track of the precise shape of the jump path and as such are natural objects whenever different ways of approaching a jump need to be distinguished. While this tool has several promising applications, in this talk I will focus on its use to prove lower semicontinuity for linear-growth functionals that depend on the value of the argument function, u(x), besides its gradient. It is well known that in this situation the particular shape of jumps cannot be neglected. Using the theory of liftings, we can prove relaxation theorems under essentially optimal assumptions, generalizing a classical theorem by Fonseca & Müller (1993). The key idea is that liftings provide the right way of localizing the functional in the x and u variables simultaneously under weak* convergence. As a consequence, we are able to implement an optimal measure-theoretic blow up procedure.
This is joint work with Giles Shaw.
|
Extent |
34.0
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Warwick
|
Series | |
Date Available |
2019-03-21
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0377249
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Researcher
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International