- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Spectral Theory for the Transmission Eigenvalue Problem
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Spectral Theory for the Transmission Eigenvalue Problem Colton, David
Description
The transmission eigenvalue problem plays a central role in inverse scattering theory. This is a non-selfadjoint problem for a coupled pair of partial differential equations in a bounded domain corresponding to the support of the scattering object. Unfortunately, relatively little is known about the spectrum of this problem. In this talk I will consider the simplest case of the transmission eigenvalue problem for which the domain and eigenfunctions are spherically symmetric. In this case the transmission eigenvalue problem reduces to an eigenvalue problem for ordinary differential equations. Through the use of the theory of entire functions of a complex variable, I will show that there is a remarkable diversity in the behavior of the spectrum of this problem depending on the behavior of the refractive index near the boundary. Included in my talk will be results on the existence of complex eigenvalues, the inverse spectral problem and a remarkable connection (due to Fioralba Cakoni and Sagun Chanillo) between the location of transmission eigenvalues for automorphic solutions of the wave equation in the hyperbolic plane and the Riemann hypothesis.
Item Metadata
Title |
Spectral Theory for the Transmission Eigenvalue Problem
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-07-02T15:51
|
Description |
The transmission eigenvalue problem plays a central role in inverse scattering theory. This is a non-selfadjoint problem for a coupled pair of partial differential equations in a bounded domain corresponding to the support of the scattering object. Unfortunately, relatively little is known about the spectrum of this problem. In this talk I will consider the simplest case of the transmission eigenvalue problem for which the domain and eigenfunctions are spherically symmetric. In this case the transmission eigenvalue problem reduces to an eigenvalue problem for ordinary differential equations. Through the use of the theory of entire functions of a complex variable, I will show that there is a remarkable diversity in the behavior of the spectrum of this problem depending on the behavior of the refractive index near the boundary. Included in my talk will be results on the existence of complex eigenvalues, the inverse spectral problem and a remarkable connection (due to Fioralba Cakoni and Sagun Chanillo) between the location of transmission eigenvalues for automorphic solutions of the wave equation in the hyperbolic plane and the Riemann hypothesis.
|
Extent |
51.0
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Delaware
|
Series | |
Date Available |
2019-03-20
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0377207
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International