- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Counting points, counting fields, and heights on stacks
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Counting points, counting fields, and heights on stacks Zureick-Brown, David
Description
A folklore conjecture is that the number $N_d(K,X)$ of degree-$d$ extensions of $K$ with discriminant at most $d$ is on order $c_d X$. In the case $K = \mathbb{Q}$, this is easy for $d=2$, a theorem of Davenport and Heilbronn for $d=3$, a much harder theorem of Bhargava for $d=4$ and $5$, and completely out of reach for $d > 5$. More generally, one can ask about extensions with a specified Galois group $G$; in this case, a conjecture of Malle holds that the asymptotic growth is on order $X^a (log X)^b$ for specified constants $a,b$. The form of Malle's conjecture is reminiscent of the Batyrev--Manin conjecture, which says that the number of rational points of height at most $X$ on a Batyrev-Manin variety also grows like $X^a (log X)^b$ for specified constants $a,b$. What's more, an extension of $\mathbb{Q}$ with Galois group $G$ is a rational point on a Deligne-Mumford stack called $BG$, the classifying stack of $G$. A natural reaction is to say "the two conjectures is the same; to count number fields is just to count points on the stack $BG$ with bounded height" The problem: there is no definition of the height of a rational point on a stack. I'll explain what we think the right definition is, and explain how it suggests a heuristic which has both the Malle conjecture and the Batyrev--Manin conjecture as special cases. This is joint with Jordan Ellenberg and Matt Satriano.
Item Metadata
Title |
Counting points, counting fields, and heights on stacks
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-05-31T11:50
|
Description |
A folklore conjecture is that the number $N_d(K,X)$ of degree-$d$ extensions of $K$ with discriminant at most $d$ is on order $c_d X$. In the case $K = \mathbb{Q}$, this is easy for $d=2$, a theorem of Davenport and Heilbronn for $d=3$, a much harder theorem of Bhargava for $d=4$ and $5$, and completely out of reach for $d > 5$. More generally, one can ask about extensions with a specified Galois group $G$; in this case, a conjecture of Malle holds that the asymptotic growth is on order $X^a (log X)^b$ for specified constants $a,b$.
The form of Malle's conjecture is reminiscent of the Batyrev--Manin conjecture, which says that the number of rational points of height at most $X$ on a Batyrev-Manin variety also grows like $X^a (log X)^b$ for specified constants $a,b$. What's more, an extension of $\mathbb{Q}$ with Galois group $G$ is a rational point on a Deligne-Mumford stack called $BG$, the classifying stack of $G$. A natural reaction is to say "the two conjectures is the same; to count number fields is just to count points on the stack $BG$ with bounded height" The problem: there is no definition of the height of a rational point on a stack. I'll explain what we think the right definition is, and explain how it suggests a heuristic which has both the Malle conjecture and the Batyrev--Manin conjecture as special cases.
This is joint with Jordan Ellenberg and Matt Satriano.
|
Extent |
59.0
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Emory University
|
Series | |
Date Available |
2019-03-14
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0376873
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International