- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Odd order transcendental obstructions to the Hasse...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Odd order transcendental obstructions to the Hasse principle on general K3 surfaces Berg, Jennifer
Description
After fixing numerical invariants such as dimension, it is natural to ask which birational classes of varieties fail the Hasse principle, and moreover whether the Brauer group (or certain distinguished subsets) explains this failure. In this talk, we will focus on K3 surfaces (e.g. a double cover of the plane branched along a smooth sextic curve), which have been a testing ground for many conjectures on rational points. In 2014, Ieronymou and Skorobogatov asked whether any odd torsion in the Brauer group of a K3 surface could obstruct the Hasse principle. We answer this question in the affirmative for transcendental classes; via a purely geometric approach, we construct a 3-torsion transcendental Brauer class on a degree 2 K3 surface over the rationals with geometric Picard rank 1 (hence with trivial algebraic Brauer group) which obstructs the Hasse principle. Moreover, we do this without needing a central simple algebra representative. This is joint work with Tony Varilly-Alvarado.
Item Metadata
Title |
Odd order transcendental obstructions to the Hasse principle on general K3 surfaces
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-05-30T11:15
|
Description |
After fixing numerical invariants such as dimension, it is natural to ask which birational classes of varieties fail the Hasse principle, and moreover whether the Brauer group (or certain distinguished subsets) explains this failure. In this talk, we will focus on K3 surfaces (e.g. a double cover of the plane branched along a smooth sextic curve), which have been a testing ground for many conjectures on rational points. In 2014, Ieronymou and Skorobogatov asked whether any odd torsion in the Brauer group of a K3 surface could obstruct the Hasse principle. We answer this question in the affirmative for transcendental classes; via a purely geometric approach, we construct a 3-torsion transcendental Brauer class on a degree 2 K3 surface over the rationals with geometric Picard rank 1 (hence with trivial algebraic Brauer group) which obstructs the Hasse principle. Moreover, we do this without needing a central simple algebra representative. This is joint work with Tony Varilly-Alvarado.
|
Extent |
30.0
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Rice University
|
Series | |
Date Available |
2019-03-14
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0376870
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Postdoctoral
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International