- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Gradient Flows in Abstract Metric Spaces: Evolution...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Gradient Flows in Abstract Metric Spaces: Evolution Variational Inequalities and Stability Muratori, Matteo
Description
We study the main consequences of the existence of a Gradient Flow (GF for short), in the form of Evolution Variational Inequalities (EVI), in the very general framework of an abstract metric space. In particular, no volume measure is needed. The hypotheses on the functional associated with the GF are also very mild: we shall require at most completeness of the sublevels (no compactness assumption is made) and, for some convergence and stability results, approximate $\lambda$-convexity. The main results include: quantitative regularization properties of the flow (in terms e.g. of slope estimates and energy identities), discrete-approximation estimates of a minimizing-movement scheme and a stability theorem for the GF under suitable gamma-convergence-type hypotheses on a sequence of functionals approaching the limit functional. Existence of the GF itself is a quite delicate issue which requires some concavity-type assumptions on the metric, and will be addressed in a future project. This is a joint work with G. Savaré.
Item Metadata
Title |
Gradient Flows in Abstract Metric Spaces: Evolution Variational Inequalities and Stability
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-04-12T11:08
|
Description |
We study the main consequences of the existence of a Gradient Flow (GF for short), in the form of Evolution Variational Inequalities (EVI), in the very general framework of an abstract metric space. In particular, no volume measure is needed. The hypotheses on the functional associated with the GF are also very mild: we shall require at most completeness of the sublevels (no compactness assumption is made) and, for some convergence and stability results, approximate $\lambda$-convexity. The main results include: quantitative regularization properties of the flow (in terms e.g. of slope estimates and energy identities), discrete-approximation estimates of a minimizing-movement scheme and a stability theorem for the GF under suitable gamma-convergence-type hypotheses on a sequence of functionals approaching the limit functional. Existence of the GF itself is a quite delicate issue which requires some concavity-type assumptions on the metric, and will be addressed in a future project. This is a joint work with G. Savaré.
|
Extent |
30 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Politecnico di Milano
|
Series | |
Date Available |
2018-10-12
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0372558
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Postdoctoral
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International