- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Towards a gradient flow for microstructure
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Towards a gradient flow for microstructure Kinderlehrer, David
Description
A central problem of microstructure is to develop technologies capable of producing an arrangement, or ordering, of the material, in terms of mesoscopic parameters like geometry and crystallography, appropriate for a given application. Is there such an order in the first place? We describe very briefly the emergence of the grain boundary character distribution (GBCD), a statistic that details texture evolution, and illustrate why it should be considered a material property. Its identification as a gradient flow by our method is tantamount to exhibiting the harvested statistic as the iterates in a mass transport JKO implicit scheme, which we found astonishing. Consequently the GBCD is the solution, in some sense, of a Fokker-Planck Equation. The development exposes the question of how to understand the circumstances under which a harvested empirical statistic is a property of the underlying process. (joint work with P. Bardsley, K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, X.-Y. Lu and S. Ta'asan).
Item Metadata
| Title |
Towards a gradient flow for microstructure
|
| Creator | |
| Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
| Date Issued |
2018-04-09T09:01
|
| Description |
A central problem of microstructure is to develop technologies capable of producing an arrangement, or ordering, of the material, in terms of mesoscopic parameters like geometry and crystallography, appropriate for a given application. Is there such an order in the first place? We describe very briefly the emergence of the grain boundary character distribution (GBCD), a statistic that details texture evolution, and illustrate why it should be considered a material property. Its identification as a gradient flow by our method is tantamount to exhibiting the harvested statistic as the iterates in a mass transport JKO implicit scheme, which we found astonishing. Consequently the GBCD is the solution, in some sense, of a Fokker-Planck Equation. The development exposes the question of how to understand the circumstances under which a harvested empirical statistic is a property of the underlying process. (joint work with P. Bardsley, K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, X.-Y. Lu and S. Ta'asan).
|
| Extent |
36 minutes
|
| Subject | |
| Type | |
| File Format |
video/mp4
|
| Language |
eng
|
| Notes |
Author affiliation: Carnegie Mellon University
|
| Series | |
| Date Available |
2018-10-11
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0372539
|
| URI | |
| Affiliation | |
| Peer Review Status |
Unreviewed
|
| Scholarly Level |
Faculty
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International