- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Gromov-Hausdorff convergence of discrete optimal transport
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Gromov-Hausdorff convergence of discrete optimal transport Maas, Jan
Description
For a natural class of discretisations of a convex domain in $R^n$, we consider the dynamical optimal transport metric for probability measures on the discrete mesh. Although the associated discrete heat flow converges to the continuous heat flow, we show that the transport metric may fail to converge to the 2-Kantorovich metric. Under an additional symmetry condition on the mesh, we show that Gromov-Hausdorff convergence to the 2-Kantorovich metric holds. This is joint work with Peter Gladbach and Eva Kopfer.
Item Metadata
Title |
Gromov-Hausdorff convergence of discrete optimal transport
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-04-12T10:33
|
Description |
For a natural class of discretisations of a convex domain in $R^n$, we consider the dynamical optimal transport metric for probability measures on the discrete mesh. Although the associated discrete heat flow converges to the continuous heat flow, we show that the transport metric may fail to converge to the 2-Kantorovich metric. Under an additional symmetry condition on the mesh, we show that Gromov-Hausdorff convergence to the 2-Kantorovich metric holds. This is joint work with Peter Gladbach and Eva Kopfer.
|
Extent |
33 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: IST Austria
|
Series | |
Date Available |
2018-10-11
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0372481
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International