- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Deterministic particle approximations of local and...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Deterministic particle approximations of local and nonlocal transport equations Di Francesco, Marco
Description
Nonlinear convection and nonlocal aggregation equations are known to feature a "formal" gradient flow structure in presence of a "nonlinear mobility", in terms of the generalized Wasserstein distance "à la" Dolbeault-Nazaret-Savaré. Such a structure is inherited by the discrete Lagrangian approximations of those equations in a quite natural way in one space dimension, and this simple remark allows to formulate a discrete-to-continuum "many particle" approximation. I will describe some recent results in this direction, which include the discrete (deterministic) particle approximation for scalar conservation laws and (more recently) a large class of nonlocal aggregation equations as main examples. The results are in collaboration with M. D. Rosini (Ferrara), S. Fagioli and E. Radici (L'Aquila).
Item Metadata
Title |
Deterministic particle approximations of local and nonlocal transport equations
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-04-12T14:00
|
Description |
Nonlinear convection and nonlocal aggregation equations are known to feature a "formal" gradient flow structure in presence of a "nonlinear mobility", in terms of the generalized Wasserstein distance "à la" Dolbeault-Nazaret-Savaré. Such a structure is inherited by the discrete Lagrangian approximations of those equations in a quite natural way in one space dimension, and this simple remark allows to formulate a discrete-to-continuum "many particle" approximation. I will describe some recent results in this direction, which include the discrete (deterministic) particle approximation for scalar conservation laws and (more recently) a large class of nonlocal aggregation equations as main examples. The results are in collaboration with M. D. Rosini (Ferrara), S. Fagioli and E. Radici (L'Aquila).
|
Extent |
32 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of L'Aquila
|
Series | |
Date Available |
2018-10-10
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0372479
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International