- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- A new continuum theory for incompressible swelling...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
A new continuum theory for incompressible swelling materials Degond, Pierre
Description
Swelling media (e.g. gels, tumors) are usually described by mechanical constitutive laws (e.g. Hooke or Darcy laws). However, constitutive relations of real swelling media are not well-known. Here, we take an opposite route and consider a simple heuristics relying on the following rule: (i) particles are at packing density; (ii) any two particles cannot swap their position; (iii) motion should be as slow as possible. These heuristics determine the medium velocity uniquely. In general, this velocity cannot be retrieved by a simple Darcy law.
Item Metadata
Title |
A new continuum theory for incompressible swelling materials
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-04-09T10:32
|
Description |
Swelling media (e.g. gels, tumors) are usually described by mechanical constitutive laws (e.g. Hooke or Darcy laws). However, constitutive relations of real swelling media are not well-known. Here, we take an opposite route and consider a simple heuristics relying on the following rule: (i) particles are at packing density; (ii) any two particles cannot swap their position; (iii) motion should be as slow as possible. These heuristics determine the medium velocity uniquely. In general, this velocity cannot be retrieved by a simple Darcy law.
|
Extent |
34 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Imperial College London
|
Series | |
Date Available |
2018-10-11
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0372455
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International