- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Random perturbations of predominantly expanding 1D...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Random perturbations of predominantly expanding 1D maps Blumenthal, Alex
Description
We consider a model of 1D multimodal circle maps with strong expansion on most of phase space, including, e.g., the one-parameter family $f_a(x) = L \sin x + a$ for $a \in [0,1)$ with fixed $L >> 1$. Even when L is quite large, the problem of deciding the asymptotic regime (stochastic versus regular) of $f_a$ for a given $a$ involves infinite-precision knowledge of infinite trajectories: outside special cases, this problem is typically impossible to resolve from any checkable finite-time conditions on the dynamics of $f_a$.
We contend that the corresponding problem for (possibly quite small) IID random perturbations of the $f_a$ is far more tractable. In our model, we perturb $f_a$ at each timestep by an IID uniformly distributed random variable in the interval $[- \epsilon, \epsilon]$ for a fixed (yet arbitrarily small) $\epsilon > 0$. We obtain a checkable condition, involving finite trajectories of $f_a$ of length ~ $\log(\epsilon^{-1})$, for this random composition to admit (1) a unique, absolutely continuous stationary ergodic measure and (2) a Lyapunov exponent of size approximately $\log L$.
Joint with Yun Yang.
Item Metadata
| Title |
Random perturbations of predominantly expanding 1D maps
|
| Creator | |
| Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
| Date Issued |
2018-03-22T19:31
|
| Description |
We consider a model of 1D multimodal circle maps with strong expansion on most of phase space, including, e.g., the one-parameter family $f_a(x) = L \sin x + a$ for $a \in [0,1)$ with fixed $L >> 1$. Even when L is quite large, the problem of deciding the asymptotic regime (stochastic versus regular) of $f_a$ for a given $a$ involves infinite-precision knowledge of infinite trajectories: outside special cases, this problem is typically impossible to resolve from any checkable finite-time conditions on the dynamics of $f_a$.
We contend that the corresponding problem for (possibly quite small) IID random perturbations of the $f_a$ is far more tractable. In our model, we perturb $f_a$ at each timestep by an IID uniformly distributed random variable in the interval $[- \epsilon, \epsilon]$ for a fixed (yet arbitrarily small) $\epsilon > 0$. We obtain a checkable condition, involving finite trajectories of $f_a$ of length ~ $\log(\epsilon^{-1})$, for this random composition to admit (1) a unique, absolutely continuous stationary ergodic measure and (2) a Lyapunov exponent of size approximately $\log L$.
Joint with Yun Yang.
|
| Extent |
49 minutes
|
| Subject | |
| Type | |
| File Format |
video/mp4
|
| Language |
eng
|
| Notes |
Author affiliation: University of Maryland
|
| Series | |
| Date Available |
2018-09-18
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0372087
|
| URI | |
| Affiliation | |
| Peer Review Status |
Unreviewed
|
| Scholarly Level |
Postdoctoral
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International