- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Covering lattice points by subspaces and counting point-hyperplane...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Covering lattice points by subspaces and counting point-hyperplane incidences Balko, Martin
Description
Let d and k be integers with 1 <= k <= d-1. Let Lambda be a d-dimensional lattice and let K be a d-dimensional compact convex body symmetric about the origin. We provide estimates for the minimum number of k-dimensional linear subspaces needed to cover all points in the intersection of Lambda with K. In particular, our results imply that the minimum number of kdimensional linear subspaces needed to cover the d-dimensional n * ... * n$ grid is at least Omega(n^(d(d-k)/(d-1)-epsilon)) and at most O(n^(d(d-k)/(d-1))), where epsilon > 0 is an arbitrarily small constant. This nearly settles a problem mentioned in the book of Brass, Moser, and Pach. We use these new results to improve the best known lower bound for the maximum number of point-hyperplane incidences by Brass and Knauer. This is a joint work with Josef Cibulka and Pavel Valtr.
Item Metadata
Title |
Covering lattice points by subspaces and counting point-hyperplane incidences
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-02-08T16:20
|
Description |
Let d and k be integers with 1 <= k <= d-1. Let Lambda be a d-dimensional lattice and let K be a d-dimensional compact convex body symmetric about the origin. We provide estimates for the minimum number of k-dimensional linear subspaces needed to cover all points in the intersection of Lambda with K. In particular, our results imply that the minimum number of kdimensional linear subspaces needed
to cover the d-dimensional n * ... * n$ grid is at least Omega(n^(d(d-k)/(d-1)-epsilon)) and at most O(n^(d(d-k)/(d-1))), where epsilon > 0 is an arbitrarily small constant. This nearly settles a problem
mentioned in the book of Brass, Moser, and Pach. We use these new results to improve the best known lower bound for the maximum number of point-hyperplane incidences by Brass and Knauer. This is a joint work with Josef Cibulka and Pavel Valtr.
|
Extent |
25 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Ben Gurion University of the Negev
|
Series | |
Date Available |
2018-08-08
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0369745
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Postdoctoral
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International