- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Constructive Polynomial Partitioning for Lines in R^3:...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Constructive Polynomial Partitioning for Lines in R^3: Revisiting Depth Cycle Elimination Ezra, Esther
Description
A recent extension of Guth (2015) to the basic polynomial partitioning technique of Guth and Katz (2015) shows the existence of a partitioning polynomial, for a given set of $k$-dimensional varieties in ${\reals}^d$, which subdivides space into open cells each of which meeting only a small fraction of the total number of varieties. For most instances, it is unknown how to obtain an explicit representation of such a partitioning polynomial (and how to construct it efficiently). This, in particular, applies to the (simple) case of lines in 3-space. In this work we present an efficient algorithmic (but somewhat suboptimal) construction for this setting, under the assumption that the lines are non-vertical and pairwise disjoint. We then revisit the problem of eliminating depth cycles among $n$ non-vertical pairwise disjoint triangles in $3$-space, recently been studied by Aronov etal. (2017) and de Berg (2017). Our main result is an algorithmic $O(n^{5/3+\eps})$ bound, for any $\eps > 0$, on the number of pieces one needs to cut the triangles such that the depth relation they induce does not contain cycles.
Joint work with Boris Aronov.
Item Metadata
| Title |
Constructive Polynomial Partitioning for Lines in R^3: Revisiting Depth Cycle Elimination
|
| Creator | |
| Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
| Date Issued |
2018-02-08T13:33
|
| Description |
A recent extension of Guth (2015) to the basic polynomial partitioning technique of Guth and Katz (2015) shows the existence of a partitioning polynomial, for a given set of $k$-dimensional varieties in ${\reals}^d$, which subdivides space into open cells each of which meeting only a small fraction of the total number of varieties. For most instances, it is unknown how to obtain an explicit representation of such a partitioning polynomial (and how to construct it efficiently). This, in particular, applies to the (simple) case of lines in 3-space. In this work we present an efficient algorithmic (but somewhat suboptimal) construction for this setting, under the assumption that the lines are non-vertical and pairwise disjoint. We then revisit the problem of eliminating depth cycles among $n$ non-vertical pairwise disjoint triangles in $3$-space, recently been studied by Aronov etal. (2017) and de Berg (2017). Our main result is an algorithmic $O(n^{5/3+\eps})$ bound, for any $\eps > 0$, on the number of pieces one needs to cut the triangles such that the depth relation they induce does not contain cycles.
Joint work with Boris Aronov.
|
| Extent |
37 minutes
|
| Subject | |
| Type | |
| File Format |
video/mp4
|
| Language |
eng
|
| Notes |
Author affiliation: Georgia Tech
|
| Series | |
| Date Available |
2018-08-07
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0369741
|
| URI | |
| Affiliation | |
| Peer Review Status |
Unreviewed
|
| Scholarly Level |
Researcher
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International