- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Space quartics, ordinary planes and coplanar quadruples
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Space quartics, ordinary planes and coplanar quadruples Swanepoel, Konrad
Description
It was shown by Raz-Sharir-De Zeeuw (2016) that the number of coplanar quadruples among n points on an algebraic curve in complex 3-space not containing a planar component or a component of degree 4, is O(n^{8/3}). We complement their result by characterizing the degree 4 space curves in which n points on the curve always have a subcubic number of coplanar quadruples. This also gives a characterization of the plane curves of degree 3 and 4 in which n points on the curve always have a subcubic number of concyclic quadruples. We use the 4-dimensional Elekes-Szabo theorem of Raz-Sharir-De Zeeuw and some old results from classical invariant theory. Simeon Ball (2016) showed that a set spanning real 3-space, no 3 collinear, with only Kn^2 ordinary planes, lies on the intersection of two quadrics, up to O(K) points. His proof is based on results of Green and Tao, and also generalizes their proof to 3-space. We find a significant simplification of his proof that avoids 3-dimensional dual configurations, using Bezout's theorem and the above-mentioned results from classical invariant theory. This is joint work with Aaron Lin.
Item Metadata
Title |
Space quartics, ordinary planes and coplanar quadruples
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2018-02-08T10:30
|
Description |
It was shown by Raz-Sharir-De Zeeuw (2016) that the number of coplanar quadruples among n points on an algebraic curve in complex 3-space not containing a planar component or a component of degree 4, is O(n^{8/3}). We complement their result by characterizing the degree 4 space curves in which n points on the curve always have a subcubic number of coplanar quadruples. This also gives a characterization of the plane curves of degree 3 and 4 in which n points on the curve always have a subcubic number of concyclic quadruples. We use the 4-dimensional Elekes-Szabo theorem of Raz-Sharir-De Zeeuw and some old results from classical invariant theory.
Simeon Ball (2016) showed that a set spanning real 3-space, no 3 collinear, with only Kn^2 ordinary planes, lies on the intersection of two quadrics, up to O(K) points. His proof is based on results of Green and Tao, and also generalizes their proof to 3-space. We find a significant simplification of his proof that avoids 3-dimensional dual configurations, using Bezout's theorem and the above-mentioned results from classical invariant theory. This is joint work with Aaron Lin.
|
Extent |
31 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: London School of Economics and Political Science
|
Series | |
Date Available |
2018-08-08
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0369739
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International