- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- A high efficiency approximation of EnKF for coupled...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
A high efficiency approximation of EnKF for coupled model data assimilation Zhang, Shaoqing
Description
To implement Bayes’ Theorem for data assimilation, an ensemble Kalman filter (EnKF) uses a set of model integrations to simulate the temporally-varying background probability distribution function. Due to the merit of derived data assimilation solution coherently combining model and observational information, EnKF has risen as a widely-promising data assimilation algorithm in weather and climate studies. However, its huge computational resource demanding for ensemble model integrations sets a significant limitation on applications in high resolution coupled earth systems. Given that the background error statistics consist of stationary, slow-varying and fast varying parts, a high efficiency approximate EnKF (Hea-EnKF) is designed to dramatically enhance the computational efficiency. The Hea-EnKF is a combination of stationary, slow-varying and fast-varying filters, implemented in regressions sampled from large size single model solution data and updated with the model integrations. Validation shows that due to improved representation on stationary and slow-varying background statistics, the Hea-EnKF while only requiring a small fraction of computer resources can be better than the standard EnKF that uses finite ensemble statistics. The new algorithm makes practical to assimilate multi-source observations into any high-resolution coupled model intractable with current super-computing power for weather-climate analysis and predictions.
Item Metadata
Title |
A high efficiency approximation of EnKF for coupled model data assimilation
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2017-11-21T09:01
|
Description |
To implement Bayes’ Theorem for data assimilation, an ensemble Kalman filter (EnKF) uses a set of model integrations to simulate the temporally-varying background probability distribution function. Due to the merit of derived data assimilation solution coherently combining model and observational information, EnKF has risen as a widely-promising data assimilation algorithm in weather and climate studies. However, its huge computational resource demanding for ensemble model integrations sets a significant limitation on applications in high resolution coupled earth systems. Given that the background error statistics consist of stationary, slow-varying and fast varying parts, a high efficiency approximate EnKF (Hea-EnKF) is designed to dramatically enhance the computational efficiency. The Hea-EnKF is a combination of stationary, slow-varying and fast-varying filters, implemented in regressions sampled from large size single model solution data and updated with the model integrations. Validation shows that due to improved representation on stationary and slow-varying background statistics, the Hea-EnKF while only requiring a small fraction of computer resources can be better than the standard EnKF that uses finite ensemble statistics. The new algorithm makes practical to assimilate multi-source observations into any high-resolution coupled model intractable with current super-computing power for weather-climate analysis and predictions.
|
Extent |
33 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Ocean University of China
|
Series | |
Date Available |
2018-05-21
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0366963
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International