- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Algebraic dynamics from topological and holomorphic...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Algebraic dynamics from topological and holomorphic dynamics Ramadas, Rohini
Description
Let f:S^2 —> S^2 be a postcritically finite branched covering from the 2-sphere to itself with postcritical set P. Thurston studied the dynamics of f using an induced holomorphic self-map T(f) of the Teichmuller space of complex structures on (S^2, P). Koch found that this holomorphic dynamical system on Teichmuller space descends to algebraic dynamical systems:
1. T(f) always descends to a multivalued self map H(f) of the moduli space M_{0,P} of markings of the Riemann sphere by the finite set P
2. When P contains a point x at which f is fully ramified, under certain combinatorial conditions on f, the inverse of T(f) descends to a rational self-map M(f) of projective space CP^n. When, in addition, x is a fixed point of f, i.e. f is a `topological polynomial’, the induced self-map M(f) is regular.
The dynamics of H(f) and M(f) may be studied via numerical invariants called dynamical degrees: the k-th dynamical degree of an algebraic dynamical system measures the asymptotic growth rate, under iteration, of the degrees of k-dimensional subvarieties.
I will introduce the dynamical systems T(f), H(f) and M(f), and dynamical degrees. I will then discuss why it is useful to study H(f) (resp. M(f)) simultaneously on several compactifications of M_{0,P}. We find that the dynamical degrees of H(f) (resp. M(f)) are algebraic integers whose properties are constrained by the dynamics of f on the finite set P. In particular, when M(f) exists, then the more f resembles a topological polynomial, the more M(f) : CP^n - - -> CP^n behaves like a regular map.
Item Metadata
| Title |
Algebraic dynamics from topological and holomorphic dynamics
|
| Creator | |
| Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
| Date Issued |
2017-11-15T09:01
|
| Description |
Let f:S^2 —> S^2 be a postcritically finite branched covering from the 2-sphere to itself with postcritical set P. Thurston studied the dynamics of f using an induced holomorphic self-map T(f) of the Teichmuller space of complex structures on (S^2, P). Koch found that this holomorphic dynamical system on Teichmuller space descends to algebraic dynamical systems:
1. T(f) always descends to a multivalued self map H(f) of the moduli space M_{0,P} of markings of the Riemann sphere by the finite set P
2. When P contains a point x at which f is fully ramified, under certain combinatorial conditions on f, the inverse of T(f) descends to a rational self-map M(f) of projective space CP^n. When, in addition, x is a fixed point of f, i.e. f is a `topological polynomial’, the induced self-map M(f) is regular.
The dynamics of H(f) and M(f) may be studied via numerical invariants called dynamical degrees: the k-th dynamical degree of an algebraic dynamical system measures the asymptotic growth rate, under iteration, of the degrees of k-dimensional subvarieties.
I will introduce the dynamical systems T(f), H(f) and M(f), and dynamical degrees. I will then discuss why it is useful to study H(f) (resp. M(f)) simultaneously on several compactifications of M_{0,P}. We find that the dynamical degrees of H(f) (resp. M(f)) are algebraic integers whose properties are constrained by the dynamics of f on the finite set P. In particular, when M(f) exists, then the more f resembles a topological polynomial, the more M(f) : CP^n - - -> CP^n behaves like a regular map.
|
| Extent |
68 minutes
|
| Subject | |
| Type | |
| File Format |
video/mp4
|
| Language |
eng
|
| Notes |
Author affiliation: Harvard University
|
| Series | |
| Date Available |
2018-05-14
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0366303
|
| URI | |
| Affiliation | |
| Peer Review Status |
Unreviewed
|
| Scholarly Level |
Postdoctoral
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International