- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Hybrid fuzzy-stochastic predictive modeling and computation
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Hybrid fuzzy-stochastic predictive modeling and computation Motamed, Mohammad
Description
Predictive computational science is an emerging discipline concerned with assessing the predictability of mathematical and computational tools, particularly in the presence of inevitable uncertainty and limited information. In this talk, I will present a new comprehensive predictive methodology embedded in a new hybrid fuzzy-stochastic framework to predict physical events described by partial differential equations (PDEs) and subject to both random (aleatoric) and non-random (epistemic) uncertainty. In the new framework the uncertain parameters will be characterized by random fields with fuzzy moments. This will result in a new class of PDEs with hybrid fuzzy-stochastic parameters, coined fuzzy-stochastic PDEs, for which forward and inverse problems need to be solved. I will demonstrate the importance and feasibility of the new methodology by applying it to a complex problem: prediction of the response of materials with hierarchical microstructure to external forces. This model problem will serve as an illustrative example, one that cannot be tackled by today’s UQ methodologies.
Item Metadata
Title |
Hybrid fuzzy-stochastic predictive modeling and computation
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2017-10-10T09:19
|
Description |
Predictive computational science is an emerging discipline concerned with assessing the predictability of mathematical and computational tools, particularly in the presence of inevitable uncertainty and limited information. In this talk, I will present a new comprehensive predictive methodology embedded in a new hybrid fuzzy-stochastic framework to predict physical events described by partial differential equations (PDEs) and subject to both random (aleatoric) and non-random (epistemic) uncertainty. In the new framework the uncertain parameters will be characterized by random fields with fuzzy moments. This will result in a new class of PDEs with hybrid fuzzy-stochastic parameters, coined fuzzy-stochastic PDEs, for which forward and inverse problems need to be solved. I will demonstrate the importance and feasibility of the new methodology by applying it to a complex problem: prediction of the response of materials with hierarchical microstructure to external forces. This model problem will serve as an illustrative example, one that cannot be tackled by today’s UQ methodologies.
|
Extent |
20 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of New Mexico
|
Series | |
Date Available |
2018-04-09
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0365247
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International