- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Slope filtrations of $F$-isocrystals, log decay, and...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Slope filtrations of $F$-isocrystals, log decay, and genus stability for towers of curves Kramer-Miller, Joe
Description
We introduce a notion of $F$-isocrystals with logarithmic decay and give a conjecture relating this notion to slope filtrations. When the unit-root subcrystal has rank one we prove this conjecture. Combining this with a monodromy theorem we give a new proof of the Drinfeld-Kedlaya theorem. We also prove a generalized version of Wan's conjecture on genus stability for towers of curves coming from geometry.
Item Metadata
| Title |
Slope filtrations of $F$-isocrystals, log decay, and genus stability for towers of curves
|
| Creator | |
| Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
| Date Issued |
2017-10-06T09:03
|
| Description |
We introduce a notion of $F$-isocrystals with logarithmic decay and give a conjecture relating this notion to slope filtrations. When the unit-root subcrystal has rank one we prove this conjecture. Combining this with a monodromy theorem we give a new proof of the Drinfeld-Kedlaya theorem. We also prove a generalized version of Wan's conjecture on genus stability for towers of curves coming from geometry.
|
| Extent |
59 minutes
|
| Subject | |
| Type | |
| File Format |
video/mp4
|
| Language |
eng
|
| Notes |
Author affiliation: University College London
|
| Series | |
| Date Available |
2018-04-04
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0364677
|
| URI | |
| Affiliation | |
| Peer Review Status |
Unreviewed
|
| Scholarly Level |
Postdoctoral
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International