- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Douglas-Rachford Method for Non-Convex Feasibility...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Douglas-Rachford Method for Non-Convex Feasibility Problems Lindstrom, Scott
Description
The Douglas-Rachford method has been employed successfully to solve a variety of non-convex feasibility problems. In particular, it shows surprising stability when applied to finding the intersections of hypersurfaces. We prove local convergence in the generalization of a case prototypical of the phase retrieval problem. In so doing, we also discover phenomena which may inhibit convergence. Finally we illustrate an application to solving boundary valued ordinary differential equations.
This talk includes discoveries from three closely related works:
1. With Brailey Sims, Matthew Skerritt. ''Computing Intersections of Implicitly Specified Plane Curves.'' To appear in <em>Journal of Nonlinear and Convex Analysis</em>.
2. With Jonathan M. Borwein, Brailey Sims, Anna Schneider, Matthew Skerritt. ''Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres.'' Submitted to <em>Set Valued and Variational Analysis</em>.
3. With Bishnu Lamichhane and Brailey Sims. ''Application of Projection Algorithms to Differential Equations: Boundary Value Problems,'' in preparation with plans to submit to <em>ANZIAM Journal</em>.
Item Metadata
Title |
Douglas-Rachford Method for Non-Convex Feasibility Problems
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2017-09-18T12:19
|
Description |
The Douglas-Rachford method has been employed successfully to solve a variety of non-convex feasibility problems. In particular, it shows surprising stability when applied to finding the intersections of hypersurfaces. We prove local convergence in the generalization of a case prototypical of the phase retrieval problem. In so doing, we also discover phenomena which may inhibit convergence. Finally we illustrate an application to solving boundary valued ordinary differential equations.
This talk includes discoveries from three closely related works: 1. With Brailey Sims, Matthew Skerritt. ''Computing Intersections of Implicitly Specified Plane Curves.'' To appear in <em>Journal of Nonlinear and Convex Analysis</em>. 2. With Jonathan M. Borwein, Brailey Sims, Anna Schneider, Matthew Skerritt. ''Dynamics of the Douglas-Rachford Method for Ellipses and p-Spheres.'' Submitted to <em>Set Valued and Variational Analysis</em>. 3. With Bishnu Lamichhane and Brailey Sims. ''Application of Projection Algorithms to Differential Equations: Boundary Value Problems,'' in preparation with plans to submit to <em>ANZIAM Journal</em>. |
Extent |
29 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Newcastle
|
Series | |
Date Available |
2018-03-24
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0364440
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International