- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Applications of Elliptically-Polarized, Few-Cycle Attosecond...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Applications of Elliptically-Polarized, Few-Cycle Attosecond Pulses Starace, Anthony
Description
Use of elliptically-polarized light opens the possibility of investigating effects that are not accessible with linearly-polarized pulses. This talk presents new physical effects that are predicted for ionization of the helium atom by few-cycle, elliptically-polarized attosecond pulses. For double ionization of He by an intense elliptically-polarized attosecond pulse, we predict a nonlinear dichroic effect (i.e., the difference of the two-electron angular distributions in the polarization plane for opposite helicities of the ionizing pulse) that is sensitive to the carrier-envelope phase, ellipticity, peak intensity I, and temporal duration of the pulse [1]. For single [2,3] and double ionization [4] of He by two oppositely circularly-polarized, time-delayed attosecond pulses, we predict that the photoelectron momentum distributions in the polarization plane have helical vortex structures that are exquisitely sensitive to the time-delay between the pulses, their relative phase, and their handedness [2-4]. These effects manifest the ability to control the angular distributions of the ionized electrons by means of the attosecond pulse parameters. Our predictions are obtained numerically by solving the two-electron time-dependent Schrödinger equation for the six-dimensional case of elliptically-polarized attosecond pulses. They are interpreted analytically by means of perturbation theory analyses of the two ionization processes. <br/><br/> *This work is supported in part by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Award No. DE-FG03-96ER14646. <br/><br/> [1] J.M. Ngoko Djiokap, N.L. Manakov, A.V. Meremianin, S.X. Hu, L.B. Madsen, and A.F. Starace, “Nonlinear dichroism in back-to-back double ionization of He by an intense elliptically-polarized few-cycle XUV pulse,” Phys. Rev. Lett. 113, 223002 (2014).<br/> [2] J.M. Ngoko Djiokap, S.X. Hu, L.B. Madsen, N.L. Manakov, A.V. Meremianin, and A.F. Starace, “Electron Vortices in Photoionization by Circularly Polarized Attosecond Pulses,” Phys. Rev. Lett. 115, 113004 (2015). <br/> [3] J.M. Ngoko Djiokap, A.V. Meremianin, N.L. Manakov, S.X. Hu, L.B. Madsen, and A.F. Starace, “Multistart Spiral Electron Vortices in Ionization by Circularly Polarized UV Pulses,” Phys. Rev. A 94, 013408 (2016). <br/> [4] J.M. Ngoko Djiokap, A.V. Meremianin, N.L. Manakov, S.X. Hu, L.B. Madsen, and A.F. Starace, “Kinematical Vortices in Double Photoionization of Helium by Attosecond Pulses,” Phys. Rev. A (accepted 19 June 2017, in press).
Item Metadata
Title |
Applications of Elliptically-Polarized, Few-Cycle Attosecond Pulses
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2017-08-15T16:00
|
Description |
Use of elliptically-polarized light opens the possibility of investigating effects that are not accessible with linearly-polarized pulses. This talk presents new physical effects that are predicted for ionization of the helium atom by few-cycle, elliptically-polarized attosecond pulses. For double ionization of He by an intense elliptically-polarized attosecond pulse, we predict a nonlinear dichroic effect (i.e., the difference of the two-electron angular distributions in the polarization plane for opposite helicities of the ionizing pulse) that is sensitive to the carrier-envelope phase, ellipticity, peak intensity I, and temporal duration of the pulse [1]. For single [2,3] and double ionization [4] of He by two oppositely circularly-polarized, time-delayed attosecond pulses, we predict that the photoelectron momentum distributions in the polarization plane have helical vortex structures that are exquisitely sensitive to the time-delay between the pulses, their relative phase, and their handedness [2-4]. These effects manifest the ability to control the angular distributions of the ionized electrons by means of the attosecond pulse parameters. Our predictions are obtained numerically by solving the two-electron time-dependent Schrödinger equation for the six-dimensional case of elliptically-polarized attosecond pulses. They are interpreted analytically by means of perturbation theory analyses of the two ionization processes.
<br/><br/>
*This work is supported in part by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Award No. DE-FG03-96ER14646.
<br/><br/>
[1] J.M. Ngoko Djiokap, N.L. Manakov, A.V. Meremianin, S.X. Hu, L.B. Madsen, and A.F. Starace, “Nonlinear dichroism in back-to-back double ionization of He by an intense elliptically-polarized few-cycle XUV pulse,” Phys. Rev. Lett. 113, 223002 (2014).<br/>
[2] J.M. Ngoko Djiokap, S.X. Hu, L.B. Madsen, N.L. Manakov, A.V. Meremianin, and A.F. Starace, “Electron Vortices in Photoionization by Circularly Polarized Attosecond Pulses,” Phys. Rev. Lett. 115, 113004 (2015).
<br/>
[3] J.M. Ngoko Djiokap, A.V. Meremianin, N.L. Manakov, S.X. Hu, L.B. Madsen, and A.F. Starace, “Multistart Spiral Electron Vortices in Ionization by Circularly Polarized UV Pulses,” Phys. Rev. A 94, 013408 (2016).
<br/>
[4] J.M. Ngoko Djiokap, A.V. Meremianin, N.L. Manakov, S.X. Hu, L.B. Madsen, and A.F. Starace, “Kinematical Vortices in Double Photoionization of Helium by Attosecond Pulses,” Phys. Rev. A (accepted 19 June 2017, in press).
|
Extent |
57 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Nebraska
|
Series | |
Date Available |
2018-02-11
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0363493
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International