- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Strongly quasipositive links, cyclic branched covers,...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Strongly quasipositive links, cyclic branched covers, and L-spaces Gordon, Cameron
Description
We give constraints on when the $n$-fold cyclic branched cover $\Sigma_n(L)$ of a strongly quasipositive link $L$ can be an L-space. In particular we show that if $K$ is a non-trivial L-space knot and $\Sigma_n(K)$ is an L-space then (1) $n \le 5$; (2) if $n$ = 4 or 5 then $K$ is the torus knot $T(2,3)$; (3) if $n$ = 3 then $K$ is either $T(2,3)$ or $T(2,5)$, or $K$ is hyperbolic and has the same Alexander polynomial as $T(2,5)$; (4) if $n$ = 2 then $\Delta_{K}(t)$ is a non-trivial product of cyclotomic polynomials. (This is joint work with Michel Boileau and Steve Boyer.)
Item Metadata
Title |
Strongly quasipositive links, cyclic branched covers, and L-spaces
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2017-08-01T12:21
|
Description |
We give constraints on when the $n$-fold cyclic branched cover $\Sigma_n(L)$ of a strongly quasipositive link $L$ can be an L-space. In particular we show that if $K$ is a non-trivial L-space knot and $\Sigma_n(K)$ is an L-space then (1) $n \le 5$; (2) if $n$ = 4 or 5 then $K$ is the torus knot $T(2,3)$; (3) if $n$ = 3 then $K$ is either $T(2,3)$ or $T(2,5)$, or $K$ is hyperbolic and has the same Alexander polynomial as $T(2,5)$; (4) if $n$ = 2 then $\Delta_{K}(t)$ is a non-trivial product of cyclotomic polynomials. (This is joint work with Michel Boileau and Steve Boyer.)
|
Extent |
57 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Texas at Austin
|
Series | |
Date Available |
2018-01-29
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0363281
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International