- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Exploring the spectral stability of standing and traveling...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Exploring the spectral stability of standing and traveling waves in mesenchymal migration Cruz-García, Salvador
Description
Mesenchymal migration is a proteolytic and path generating strategy of individual cell motion inside the network of collagen fibres that compose the extracellular matrix of tissues. We analyze the spectral stability of the families of standing and traveling wave solutions of the one-dimensional version of the $M^5$-model, which was proposed by T. Hillen to describe mesenchymal cell movement. Regarding the standing waves, they are spectrally stable and the spectrum of the linearized operator around the waves consists solely of essential spectrum. To prove that in the standing case the point spectrum is empty we use energy estimates together with the integrated-variable technique of Goodman. The panorama is completely different in the traveling case; the wave profiles are spectrally unstable due to the fact that the essential spectrum reaches the closed right-half complex plane. In our pursuit of spectral stability, we have constructed a weighted Sobolev space where the essential spectrum lies inside the open left-half complex plane.
Item Metadata
Title |
Exploring the spectral stability of standing and traveling waves in mesenchymal migration
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2017-06-22T12:01
|
Description |
Mesenchymal migration is a proteolytic and path generating strategy of individual cell motion inside the network of collagen fibres that compose the extracellular matrix of tissues. We analyze the spectral stability of the families of standing and traveling wave solutions of the one-dimensional version of the $M^5$-model, which was proposed by T. Hillen to describe mesenchymal cell movement. Regarding the standing waves, they are spectrally stable and the spectrum of the linearized operator around the waves consists solely of essential spectrum. To prove that in the standing case the point spectrum is empty we use energy estimates together with the integrated-variable technique of Goodman. The panorama is completely different in the traveling case; the wave profiles are spectrally unstable due to the fact that the essential spectrum reaches the closed right-half complex plane. In our pursuit of spectral stability, we have constructed a weighted Sobolev space where the essential spectrum lies inside the open left-half complex plane.
|
Extent |
24 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: IIMAS
|
Series | |
Date Available |
2017-12-20
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0362146
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Graduate
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International