- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Nondegeneracy and stability of periodic traveling waves...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Nondegeneracy and stability of periodic traveling waves in a fractional NLS equation Johnson, Mathew
Description
In the stability and blowup for traveling or standing waves in nonlinear Hamiltonian dispersive equations, the non-degeneracy of the linearization about such a wave is of paramount importance. That is, one must verify the kernel of the second variation of the Hamiltonian is generated by the continuous symmetries of the PDE. The proof of this property can be far from trivial, especially in cases where the dispersion admits a nonlocal description where shooting arguments, Sturm-Liouville theories, and other ODE methods may not be applicable. In this talk, we discuss the non degeneracy and nonlinear orbital stability of antiperiodic traveling wave solutions to a class of defocusing NLS equations with fractional dispersion. Key to our analysis is the development of a ground state theory and oscillation theory for linear periodic, fractional Schrodinger operators with antiperiodic boundary conditions. This is joint work with Kyle Claassen (KU).
Item Metadata
Title |
Nondegeneracy and stability of periodic traveling waves in a fractional NLS equation
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2017-06-20T09:29
|
Description |
In the stability and blowup for traveling or standing waves in nonlinear Hamiltonian dispersive equations, the non-degeneracy of the linearization about such a wave is of paramount importance. That is, one must verify the kernel of the second variation of the Hamiltonian is generated by the continuous symmetries of the PDE. The proof of this property can be far from trivial, especially in cases where the dispersion admits a nonlocal description where shooting arguments, Sturm-Liouville theories, and other ODE methods may not be applicable. In this talk, we discuss the non degeneracy and nonlinear orbital stability of antiperiodic traveling wave solutions to a class of defocusing NLS equations with fractional dispersion. Key to our analysis is the development of a ground state theory and oscillation theory for linear periodic, fractional Schrodinger operators with antiperiodic boundary conditions. This is joint work with Kyle Claassen (KU).
|
Extent |
29 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: University of Kansas
|
Series | |
Date Available |
2017-12-18
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0362070
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Faculty
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International