- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Towards a geometric variational discretization of compressible...
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Towards a geometric variational discretization of compressible fluids: the rotating shallow water equations Bauer, Werner
Description
In this talk we present a geometric variational discretization of equations describing compressible fluids. The numerical scheme is obtained by discretizing, in a structure-preserving way, the Lie group formulation of fluid dynamics on diffeomorphism groups and the associated variational principles. Our framework applies to irregular mesh discretizations in 2D and 3D. It systematically extends work previously made for incompressible fluids to the compressible case. We consider in details the numerical scheme on 2D irregular simplicial meshes and evaluate the scheme numerically for the rotating shallow water equations. In particular, we investigate whether the scheme conserves stationary solutions, represents well the nonlinear dynamics, and approximates well the frequency relations of the continuous equations, while preserving conservation laws such as mass and total energy.
Item Metadata
Title |
Towards a geometric variational discretization of compressible fluids: the rotating shallow water equations
|
Creator | |
Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
Date Issued |
2017-06-13T16:01
|
Description |
In this talk we present a geometric variational discretization of equations describing compressible fluids. The numerical scheme is obtained by discretizing, in a structure-preserving way, the Lie group formulation of fluid dynamics on diffeomorphism groups and the associated variational principles. Our framework applies to irregular mesh discretizations in 2D and 3D. It systematically extends work previously made for incompressible fluids to the compressible case. We consider in details the numerical scheme on 2D irregular simplicial meshes and evaluate the scheme numerically for the rotating shallow water equations. In particular, we investigate whether the scheme conserves stationary solutions, represents well the nonlinear dynamics, and approximates well the frequency relations of the continuous equations, while preserving conservation laws such as mass and total energy.
|
Extent |
54 minutes
|
Subject | |
Type | |
File Format |
video/mp4
|
Language |
eng
|
Notes |
Author affiliation: Imperial College London
|
Series | |
Date Available |
2017-12-11
|
Provider |
Vancouver : University of British Columbia Library
|
Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
DOI |
10.14288/1.0361785
|
URI | |
Affiliation | |
Peer Review Status |
Unreviewed
|
Scholarly Level |
Postdoctoral
|
Rights URI | |
Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International