- Library Home /
- Search Collections /
- Open Collections /
- Browse Collections /
- BIRS Workshop Lecture Videos /
- Buium-Manin theory and periods of Abelian varieties
Open Collections
BIRS Workshop Lecture Videos
BIRS Workshop Lecture Videos
Buium-Manin theory and periods of Abelian varieties Katz, Eric
Description
An important tool for bounding the number of rational or torsion points on a curve is to find a function that vanishes at those points and bounding its zeroes. This is essential to Coleman's effective Chabauty and Buium's p-adic differential characters. Buium's work, while appearing quite different, is based on Manin's proof of the function field Mordell conjecture which made use of a Picard-Fuchs differential operator annihilating the periods of an Abelian variety. In this talk, we will discuss a project with Dupuy, Rabinoff, and Zureick-Brown to unify Buium's and Coleman's work in hope of finding more functions vanishing on points of arithmetic interest. This involves constructing differential characters using the p-adic integration theories of Coleman and Colmez, understanding the periods of Abelian varieties, and connections with p-adic Hodge theory.
Item Metadata
| Title |
Buium-Manin theory and periods of Abelian varieties
|
| Creator | |
| Publisher |
Banff International Research Station for Mathematical Innovation and Discovery
|
| Date Issued |
2017-06-02T09:00
|
| Description |
An important tool for bounding the number of rational or torsion points on a curve is to find a function that vanishes at those points and bounding its zeroes. This is essential to Coleman's effective Chabauty and Buium's p-adic differential characters. Buium's work, while appearing quite different, is based on Manin's proof of the function field Mordell conjecture which made use of a Picard-Fuchs differential operator annihilating the periods of an Abelian variety. In this talk, we will discuss a project with Dupuy, Rabinoff, and Zureick-Brown to unify Buium's and Coleman's work in hope of finding more functions vanishing on points of arithmetic interest. This involves constructing differential characters using the p-adic integration theories of Coleman and Colmez, understanding the periods of Abelian varieties, and connections with p-adic Hodge theory.
|
| Extent |
45 minutes
|
| Subject | |
| Type | |
| File Format |
video/mp4
|
| Language |
eng
|
| Notes |
Author affiliation: Ohio State University
|
| Series | |
| Date Available |
2017-11-29
|
| Provider |
Vancouver : University of British Columbia Library
|
| Rights |
Attribution-NonCommercial-NoDerivatives 4.0 International
|
| DOI |
10.14288/1.0360789
|
| URI | |
| Affiliation | |
| Peer Review Status |
Unreviewed
|
| Scholarly Level |
Faculty
|
| Rights URI | |
| Aggregated Source Repository |
DSpace
|
Item Media
Item Citations and Data
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International